Jin measures the temperature outside to be [tex]$35^{\circ} C$[/tex]. He needs to convert the temperature to degrees Fahrenheit.

The formula to convert Celsius to Fahrenheit is:
[tex]\[ F = \frac{9}{5} C + 32 \][/tex]

Evaluate the formula for degrees Fahrenheit to solve the problem. Then check all that apply.

1. First, write down the formula.
2. Next, substitute 35 for [tex]$C$[/tex].
3. Now, use the order of operations to simplify.

A. Do the multiplication first.
B. Do the addition first.

Choose the correct result:
- [tex]35^{\circ} C[/tex] is [tex]95^{\circ} F[/tex].
- [tex]35^{\circ} C[/tex] is [tex]138.6^{\circ} F[/tex].



Answer :

Let's go through the step-by-step solution to convert the given temperature from Celsius to Fahrenheit.

1. Write down the formula:
The formula to convert degrees Celsius (C) to degrees Fahrenheit (F) is:
[tex]\[ F = \frac{9}{5} C + 32 \][/tex]

2. Substitute 35 for [tex]\(C\)[/tex]:
Since Jin measures the temperature to be [tex]\(35^{\circ}C\)[/tex], we substitute [tex]\(C = 35\)[/tex] into the formula:
[tex]\[ F = \frac{9}{5} \times 35 + 32 \][/tex]

3. Use the order of operations to simplify:
According to the order of operations, we perform multiplication before addition.

- Do the multiplication first:
[tex]\[ \frac{9}{5} \times 35 = 9 \times 7 = 63 \][/tex]

- Do the addition:
[tex]\[ 63 + 32 = 95 \][/tex]

4. Result:
Therefore, [tex]\(35^{\circ}C\)[/tex] is equal to [tex]\(95^{\circ}F\)[/tex].

### Evaluation of Statements:

- Do the multiplication first: True, which yields [tex]\(63\)[/tex].
- Do the addition first: False, we must do the multiplication before addition.
- [tex]\(35^{\circ}C\)[/tex] is [tex]\(95^{\circ}F\)[/tex]: True, as our final result confirms.
- [tex]\(35^{\circ}C\)[/tex] is [tex]\(138.6^{\circ}F\)[/tex]: False, [tex]\(35^{\circ}C\)[/tex] converts to [tex]\(95^{\circ}F\)[/tex].

Therefore, the correct statements are that you should do the multiplication first and that [tex]\(35^{\circ}C\)[/tex] is [tex]\(95^{\circ}F\)[/tex].