Select the correct answer.

The volume of helium in a blimp is [tex]6.28 \times 10^9[/tex] milliliters. The density of helium in the blimp is [tex]0.1786 \frac{\text{kilogram}}{\text{meter}^3}[/tex]. Find the mass of the helium in the blimp. (Hint: [tex]1,000 \, \text{L} = 1 \, \text{cubic meter}[/tex]).

A. [tex]1,120 \, \text{kg}[/tex]
B. [tex]1.12 \, \text{kg}[/tex]
C. [tex]3.52 \times 10^7 \, \text{kg}[/tex]
D. [tex]2,840 \, \text{kg}[/tex]



Answer :

To find the mass of helium in the blimp, we need to follow these steps:

1. Convert the volume from milliliters to cubic meters:

We know that [tex]\(1,000 \text{ L} = 1 \text{ cubic meter}\)[/tex] and [tex]\(1,000 \text{ milliliters} = 1 \text{ L}\)[/tex]. Therefore, we can convert milliliters to cubic meters as follows:

[tex]\[ 6.28 \times 10^9 \text{ milliliters} \times \left(\frac{1 \text{ L}}{1,000 \text{ milliliters}}\right) \times \left(\frac{1 \text{ cubic meter}}{1,000 \text{ L}}\right) = 6.28 \times 10^3 \text{ cubic meters} \][/tex]

2. Calculate the mass of helium:

We know the formula for mass is:

[tex]\[ \text{mass} = \text{volume} \times \text{density} \][/tex]

Given:
- Volume [tex]\(= 6.28 \times 10^3 \text{ cubic meters} \)[/tex]
- Density [tex]\(= 0.1786 \frac{\text{kg}}{\text{m}^3} \)[/tex]

So, plugging in these values:

[tex]\[ \text{mass} = 6.28 \times 10^3 \text{ m}^3 \times 0.1786 \frac{\text{kg}}{\text{m}^3} = 1,121.608 \text{ kg} \][/tex]

3. Select the correct answer:

The mass of the helium in the blimp is approximately [tex]\( 1,121.608 \text{ kg} \)[/tex]. The closest answer choice is:

A. [tex]$1,120 \text{ kg}$[/tex]