To find the mass of helium in the blimp, we need to follow these steps:
1. Convert the volume from milliliters to cubic meters:
We know that [tex]\(1,000 \text{ L} = 1 \text{ cubic meter}\)[/tex] and [tex]\(1,000 \text{ milliliters} = 1 \text{ L}\)[/tex]. Therefore, we can convert milliliters to cubic meters as follows:
[tex]\[
6.28 \times 10^9 \text{ milliliters} \times \left(\frac{1 \text{ L}}{1,000 \text{ milliliters}}\right) \times \left(\frac{1 \text{ cubic meter}}{1,000 \text{ L}}\right) = 6.28 \times 10^3 \text{ cubic meters}
\][/tex]
2. Calculate the mass of helium:
We know the formula for mass is:
[tex]\[
\text{mass} = \text{volume} \times \text{density}
\][/tex]
Given:
- Volume [tex]\(= 6.28 \times 10^3 \text{ cubic meters} \)[/tex]
- Density [tex]\(= 0.1786 \frac{\text{kg}}{\text{m}^3} \)[/tex]
So, plugging in these values:
[tex]\[
\text{mass} = 6.28 \times 10^3 \text{ m}^3 \times 0.1786 \frac{\text{kg}}{\text{m}^3} = 1,121.608 \text{ kg}
\][/tex]
3. Select the correct answer:
The mass of the helium in the blimp is approximately [tex]\( 1,121.608 \text{ kg} \)[/tex]. The closest answer choice is:
A. [tex]$1,120 \text{ kg}$[/tex]