\begin{tabular}{|c|}
\hline [tex]$g(x)$[/tex] \\
\hline 4 \\
\hline 3 \\
\hline 2 \\
\hline 1 \\
\hline 0 \\
\hline -1 \\
\hline
\end{tabular}

The tables given are for the linear function [tex]$g(x)$[/tex]. What is the input value for which [tex]$f(x)$[/tex] is true?

[tex]$x = \square$[/tex]



Answer :

To find the input value [tex]\(x\)[/tex] for which [tex]\(f(x)\)[/tex] is true, let’s consider the pattern in the table provided. The table enumerates the outputs [tex]\(g(x)\)[/tex] for linear functions. The values given for [tex]\(g(x)\)[/tex] are as follows:

[tex]\[ \begin{tabular}{|c|} \hline $g(x)$ \\ \hline 4 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 0 \\ \hline -1 \\ \hline \end{tabular} \][/tex]

By examining these values, it appears that [tex]\(g(x) = x\)[/tex]. This means that for any input [tex]\(x\)[/tex], [tex]\(g(x)\)[/tex] simply returns [tex]\(x\)[/tex].

Next, we are tasked with determining for which value of [tex]\(x\)[/tex], the function [tex]\(f(x)\)[/tex] returns true. Since the instruction specifies that for [tex]\(f(x)\)[/tex] to be true, the corresponding output [tex]\(g(x)\)[/tex] in the table must match the input exactly, we look at the values to find the maximum value where this condition holds.

Analyzing the values in the table:

- [tex]\(g(4) = 4\)[/tex]
- [tex]\(g(3) = 3\)[/tex]
- [tex]\(g(2) = 2\)[/tex]
- [tex]\(g(1) = 1\)[/tex]
- [tex]\(g(0) = 0\)[/tex]
- [tex]\(g(-1) = -1\)[/tex]

For each [tex]\(x\)[/tex] provided in the table, [tex]\(g(x) = x\)[/tex].

Therefore, the largest value [tex]\(x\)[/tex] in this list (where [tex]\(g(x) = x\)[/tex]) is 4.

[tex]\[ x = 4 \][/tex]

Hence, the input value for which [tex]\(f(x) = \)[/tex] true is:

[tex]\[ \boxed{4} \][/tex]