2. Solve the following equation: [tex]6y - 20 = 2y - 4[/tex].

A. [tex]y = 4[/tex]

B. [tex]y = 2[/tex]

C. [tex]y = 16[/tex]

D. [tex]y = 3[/tex]



Answer :

To solve the equation [tex]\(6y - 20 = 2y - 4\)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ 6y - 20 = 2y - 4 \][/tex]

2. Move the terms involving [tex]\(y\)[/tex] to one side of the equation:
Subtract [tex]\(2y\)[/tex] from both sides:
[tex]\[ 6y - 20 - 2y = 2y - 4 - 2y \][/tex]
This simplifies to:
[tex]\[ 4y - 20 = -4 \][/tex]

3. Move the constant terms to the other side of the equation:
Add 20 to both sides:
[tex]\[ 4y - 20 + 20 = -4 + 20 \][/tex]
This simplifies to:
[tex]\[ 4y = 16 \][/tex]

4. Isolate [tex]\(y\)[/tex]:
Divide both sides by 4:
[tex]\[ \frac{4y}{4} = \frac{16}{4} \][/tex]
This simplifies to:
[tex]\[ y = 4 \][/tex]

So, the solution to the equation [tex]\(6y - 20 = 2y - 4\)[/tex] is [tex]\(y = 4\)[/tex].

Therefore, the correct answer is [tex]\( \boxed{y = 4} \)[/tex].