Given the exponential function [tex]f(x)[/tex] and the logarithmic function [tex]g(x)[/tex], which of the following statements is true?

A. As [tex]x \rightarrow \infty, f(x) \rightarrow \infty[/tex] and [tex]g(x) \rightarrow \infty[/tex].
B. As [tex]x \rightarrow \infty, f(x) \rightarrow \infty[/tex] and [tex]g(x) \rightarrow 1[/tex].
C. As [tex]x \rightarrow \infty, f(x) \rightarrow 3[/tex] and [tex]g(x) \rightarrow 1[/tex].
D. As [tex]x \rightarrow \infty, f(x) \rightarrow 3[/tex] and [tex]g(x) \rightarrow \infty[/tex].



Answer :

To determine the correct statement, let's analyze the behavior of the exponential function [tex]\( f(x) \)[/tex] and the logarithmic function [tex]\( g(x) \)[/tex] as [tex]\( x \rightarrow \infty \)[/tex].

1. Exponential Function [tex]\( f(x) \)[/tex]:
- An exponential function typically takes the form [tex]\( f(x) = a^x \)[/tex] where [tex]\( a > 1 \)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\( x \rightarrow \infty \)[/tex]), the value of [tex]\( f(x) \)[/tex] grows significantly larger because [tex]\( a^x \)[/tex] increases rapidly.

2. Logarithmic Function [tex]\( g(x) \)[/tex]:
- A logarithmic function typically takes the form [tex]\( g(x) = \log_b(x) \)[/tex] where [tex]\( b > 1 \)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\( x \rightarrow \infty \)[/tex]), the value of [tex]\( g(x) \)[/tex] also increases, albeit more slowly than the exponential function.

Let's evaluate the provided statements based on these observations:

1. As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex] and [tex]\( g(x) \rightarrow \infty \)[/tex]:
- This statement is correct because both the exponential function [tex]\( f(x) \)[/tex] and the logarithmic function [tex]\( g(x) \)[/tex] approach infinity as [tex]\( x \)[/tex] grows larger.

2. As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex] and [tex]\( g(x) \rightarrow 1 \)[/tex]:
- This statement is incorrect. While [tex]\( f(x) \)[/tex] does approach infinity, [tex]\( g(x) \)[/tex] does not approach 1 but instead grows larger and tends towards infinity.

3. As [tex]\( x \rightarrow \infty, f(x) \rightarrow 3 \)[/tex] and [tex]\( g(x) \rightarrow 1 \)[/tex]:
- This statement is incorrect. Neither [tex]\( f(x) \)[/tex] approaches a constant value, nor does [tex]\( g(x) \)[/tex], as both grow towards infinity.

4. As [tex]\( x \rightarrow \infty, f(x) \rightarrow 3 \)[/tex] and [tex]\( g(x) \rightarrow \infty \)[/tex]:
- This statement is incorrect. While [tex]\( g(x) \)[/tex] does approach infinity, [tex]\( f(x) \)[/tex] does not approach a constant value but instead grows larger.

After analyzing these behaviors, the correct statement is:

As [tex]\( x \rightarrow \infty, f(x) \rightarrow \infty \)[/tex] and [tex]\( g(x) \rightarrow \infty \)[/tex].

So the correct answer is:
1