Simplify: [tex]$7x^2 + 6x + 9x^2 - 5x$[/tex]

A. [tex]$16x^2 + x$[/tex]
B. [tex][tex]$16x^2 + 11x$[/tex][/tex]
C. [tex]$13x^2 + 14x$[/tex]
D. [tex]$13x^2 + 4x$[/tex]



Answer :

To simplify the given expression [tex]\( 7x^2 + 6x + 9x^2 - 5x \)[/tex], follow these steps:

1. Identify like terms:
- The terms containing [tex]\( x^2 \)[/tex] are [tex]\( 7x^2 \)[/tex] and [tex]\( 9x^2 \)[/tex].
- The terms containing [tex]\( x \)[/tex] are [tex]\( 6x \)[/tex] and [tex]\( -5x \)[/tex].

2. Combine the coefficients of the like terms:
- For the [tex]\( x^2 \)[/tex] terms:
- Combine [tex]\( 7x^2 \)[/tex] and [tex]\( 9x^2 \)[/tex].
- [tex]\( 7 + 9 = 16 \)[/tex]
- Therefore, [tex]\( 7x^2 + 9x^2 = 16x^2 \)[/tex].

- For the [tex]\( x \)[/tex] terms:
- Combine [tex]\( 6x \)[/tex] and [tex]\( -5x \)[/tex].
- [tex]\( 6 - 5 = 1 \)[/tex]
- Therefore, [tex]\( 6x - 5x = 1x \)[/tex] (or simply [tex]\( x \)[/tex]).

3. Write the simplified expression:
- The expression combines the results from the previous step: [tex]\( 16x^2 \)[/tex] and [tex]\( x \)[/tex].
- Hence, the simplified expression is [tex]\( 16x^2 + x \)[/tex].

Therefore, the simplified form of [tex]\( 7x^2 + 6x + 9x^2 - 5x \)[/tex] is [tex]\( 16x^2 + x \)[/tex].

So, the correct answer is:
[tex]\[ \boxed{16x^2 + x} \][/tex]
Which matches option (A).