What is the [tex]$y$[/tex]-intercept of the quadratic function [tex]$f(x)=(x-6)(x-2)$[/tex]?

A. [tex]$(0, -6)$[/tex]
B. [tex]$(0, 12)$[/tex]
C. [tex]$(-8, 0)$[/tex]
D. [tex]$(2, 0)$[/tex]



Answer :

To find the [tex]$y$[/tex]-intercept of the quadratic function [tex]\( f(x) = (x-6)(x-2) \)[/tex], we need to determine the value of the function when [tex]\( x = 0 \)[/tex]. The [tex]$y$[/tex]-intercept occurs where the graph of the function crosses the [tex]$y$[/tex]-axis, which is at [tex]\( x = 0 \)[/tex].

Let's follow these steps to find the [tex]$y$[/tex]-intercept:

1. Substitute [tex]\( x = 0 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = (0 - 6)(0 - 2) \][/tex]

2. Simplify the expression by performing the operations inside the parentheses:
[tex]\[ f(0) = (-6)(-2) \][/tex]

3. Multiply the results:
[tex]\[ f(0) = 12 \][/tex]

Thus, the [tex]$y$[/tex]-intercept of the function is [tex]\( (0, 12) \)[/tex].

Therefore, the correct answer is:
[tex]\[ (0, 12) \][/tex]