Which point is an [tex]\(x\)[/tex]-intercept of the quadratic function [tex]\(f(x)=(x+6)(x-3)\)[/tex]?

A. [tex]\((0, 6)\)[/tex]
B. [tex]\((0, -6)\)[/tex]
C. [tex]\((6, 0)\)[/tex]
D. [tex]\((-6, 0)\)[/tex]



Answer :

Let's determine the [tex]\(x\)[/tex]-intercepts of the quadratic function [tex]\(f(x) = (x+6)(x-3)\)[/tex].

An [tex]\(x\)[/tex]-intercept occurs where the function [tex]\(f(x)\)[/tex] equals zero, that is, where:

[tex]\[ f(x) = 0 \][/tex]

Given the function:

[tex]\[ f(x) = (x+6)(x-3) \][/tex]

We set it equal to zero:

[tex]\[ (x+6)(x-3) = 0 \][/tex]

For the product of two factors to be zero, at least one of the factors must be zero. Therefore, we solve for [tex]\(x\)[/tex] in each of the individual factors:

1. Set [tex]\(x + 6 = 0\)[/tex]:
[tex]\[ x + 6 = 0 \][/tex]
[tex]\[ x = -6 \][/tex]

2. Set [tex]\(x - 3 = 0\)[/tex]:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]

Thus, the solutions (the [tex]\(x\)[/tex]-intercepts) are:

- [tex]\((-6,0)\)[/tex]
- [tex]\((3,0)\)[/tex]

We now compare these with the given options:

- [tex]\((0,6)\)[/tex]
- [tex]\((0,-6)\)[/tex]
- [tex]\((6,0)\)[/tex]
- [tex]\((-6,0)\)[/tex]

The correct point that is an [tex]\(x\)[/tex]-intercept of the quadratic function [tex]\(f(x) = (x+6)(x-3)\)[/tex] is:

[tex]\[ (-6, 0) \][/tex]