What value of [tex]$x$[/tex] would make [tex]$\overline{ KM } \parallel \overline{ JN }$[/tex]?

Complete the statements to solve for [tex]$x$[/tex].

By the converse of the side-splitter theorem, if [tex]$\frac{JK}{KL} = \square$[/tex], then [tex]$\overline{ KM } \parallel \overline{ JN }$[/tex].

Substitute the expressions into the proportion:
[tex]\[ \frac{x-5}{x} = \frac{x-3}{x+4} \][/tex]

Cross-multiply: [tex]$(x-5) \square = x(x-3)$[/tex]

Distribute: [tex]$x(x) + x(4) - 5(x) - 5(4) = x(x) + x(-3)$[/tex]

Multiply and simplify: [tex]$x^2 - x - \square = x^2 - 3x \square$[/tex]

Solve for [tex]$x$[/tex]: [tex]$x = \square$[/tex]



Answer :

To find the value of [tex]\( x \)[/tex] that would make [tex]\(\overline{ KM } \parallel \overline{ JN }\)[/tex], we need to use the given proportion and solve for [tex]\( x \)[/tex]. Here is the detailed step-by-step solution:

1. Identify the proportion:

By the converse of the side-splitter theorem, if [tex]\(\frac{JK}{KL} = \frac{KM}{MN}\)[/tex], then [tex]\(\overline{ KM } \parallel \overline{ JN }\)[/tex].

According to the problem:

[tex]\[ \frac{x-5}{x} = \frac{x-3}{x+4} \][/tex]

2. Cross-multiply the given proportion:

Cross-multiplying the fractions, we get:

[tex]\[ (x - 5)(x + 4) = x(x - 3) \][/tex]

3. Distribute and simplify both sides:

First, expand both sides:

[tex]\[ (x - 5)(x + 4) = x^2 + 4x - 5x - 20 = x^2 - x - 20 \][/tex]

[tex]\[ x(x - 3) = x^2 - 3x \][/tex]

4. Set the expressions equal to each other and solve for [tex]\( x \)[/tex]:

Equating the two expanded expressions, we have:

[tex]\[ x^2 - x - 20 = x^2 - 3x \][/tex]

5. Move all terms to one side to simplify the equation:

Subtract [tex]\( x^2 \)[/tex] from both sides:

[tex]\[ -x - 20 = -3x \][/tex]

6. Solve for [tex]\( x \)[/tex]:

Add [tex]\( 3x \)[/tex] to both sides:

[tex]\[ 2x - 20 = 0 \][/tex]

Now isolate [tex]\( x \)[/tex] by adding 20 to both sides and then dividing by 2:

[tex]\[ 2x = 20 \][/tex]

[tex]\[ x = \frac{20}{2} \][/tex]

[tex]\[ x = 10 \][/tex]

Thus, the value of [tex]\( x \)[/tex] that makes [tex]\(\overline{ KM } \parallel \overline{ JN }\)[/tex] is:

[tex]\[ x = 10 \][/tex]