Select the correct answer.

What is the value of [tex]g(-4)[/tex]?

[tex]\[ g(x)=\left\{
\begin{array}{ll}
\sqrt[3]{x+5}, & x \leq -4 \\
-x^2 + 11, & x \ \textgreater \ -4
\end{array}\right. \][/tex]

A. -5
B. -1
C. 1
D. 27



Answer :

To determine the value of [tex]\( g(-4) \)[/tex], we need to evaluate the function [tex]\( g(x) \)[/tex] at [tex]\( x = -4 \)[/tex]. The function [tex]\( g(x) \)[/tex] is defined piecewise as follows:

[tex]\[ g(x) = \begin{cases} \sqrt[3]{x+5}, & \text{if } x \leq -4 \\ -x^2 + 11, & \text{if } x > -4 \end{cases} \][/tex]

Since [tex]\(-4 \leq -4\)[/tex], we use the first part of the piecewise function:

[tex]\[ g(x) = \sqrt[3]{x + 5} \][/tex]

Substitute [tex]\( x = -4 \)[/tex] into the function:

[tex]\[ g(-4) = \sqrt[3]{-4 + 5} \][/tex]

Simplify the expression inside the cube root:

[tex]\[ g(-4) = \sqrt[3]{1} \][/tex]

The cube root of 1 is:

[tex]\[ g(-4) = 1 \][/tex]

Thus, the value of [tex]\( g(-4) \)[/tex] is 1. The correct answer is:

C. 1