Sandy evaluated the expression below.

[tex]\[ (-2)^3(6-3)-5(2+3) \][/tex]

[tex]\[
\begin{array}{c}
(-2)^3(3)-5(5) \\
8(3)-25 \\
24-25 \\
-1
\end{array}
\][/tex]

What was Sandy's error?

A. Sandy should have evaluated [tex]\((-2)^3\)[/tex] as -8.
B. Sandy should not have multiplied 5 and 5.
C. Sandy did not add 2 and 3 correctly.
D. Sandy should not have subtracted 3 from 6 first.



Answer :

To determine Sandy's error, let's evaluate the expression [tex]\( (-2)^3(6-3) - 5(2+3) \)[/tex] step-by-step and compare it with Sandy's calculations.

1. Evaluate inside the parentheses:
- For [tex]\( (6-3) \)[/tex]:
[tex]\[ 6 - 3 = 3 \][/tex]
- For [tex]\( (2+3) \)[/tex]:
[tex]\[ 2 + 3 = 5 \][/tex]

The expression now becomes:
[tex]\[ (-2)^3 \times 3 - 5 \times 5 \][/tex]

2. Evaluate the exponentiation:
- For [tex]\( (-2)^3 \)[/tex]:
[tex]\[ (-2)^3 = -8 \][/tex]

The expression now becomes:
[tex]\[ -8 \times 3 - 5 \times 5 \][/tex]

3. Perform the multiplication:
- For [tex]\( -8 \times 3 \)[/tex]:
[tex]\[ -8 \times 3 = -24 \][/tex]
- For [tex]\( 5 \times 5 \)[/tex]:
[tex]\[ 5 \times 5 = 25 \][/tex]

The expression now becomes:
[tex]\[ -24 - 25 \][/tex]

4. Perform the subtraction:
[tex]\[ -24 - 25 = -49 \][/tex]

Sandy's steps were:
[tex]\[ (-2)^3(3) - 5(5) \][/tex]
[tex]\[ 8(3) - 25 \][/tex]
[tex]\[ 24 - 25 \][/tex]
[tex]\[ -1 \][/tex]

Comparing this to our step-by-step evaluation, we see that Sandy made an error in evaluating [tex]\( (-2)^3 \)[/tex] as [tex]\( 8 \)[/tex] instead of [tex]\( -8 \)[/tex]. This incorrect calculation led to Sandy getting the wrong final answer.

Thus, the correct answer is:
Sandy should have evaluated [tex]\((-2)^3\)[/tex] as -8.