Use the tables below to find [tex]$(p+q)(2)$[/tex].

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $p(x)$ \\
\hline
4 & -1 \\
\hline
2 & 3 \\
\hline
-3 & 2 \\
\hline
\end{tabular}
\quad
\begin{tabular}{|c|c|}
\hline
$x$ & $q(x)$ \\
\hline
4 & 1 \\
\hline
2 & -2 \\
\hline
-3 & 5 \\
\hline
\end{tabular}
\][/tex]

[tex](p+q)(2) = \square[/tex]



Answer :

To determine [tex]\((p+q)(2)\)[/tex], we need to find the values [tex]\(p(2)\)[/tex] and [tex]\(q(2)\)[/tex] from the given tables and then calculate the sum of these values.

First, let's find [tex]\(p(2)\)[/tex] from the first table:

[tex]\[ \begin{array}{|c|c|} \hline x & p(x) \\ \hline 4 & -1 \\ \hline 2 & 3 \\ \hline -3 & 2 \\ \hline \end{array} \][/tex]

From the table, we see that when [tex]\(x = 2\)[/tex], [tex]\(p(x) = 3\)[/tex]. Therefore, [tex]\(p(2) = 3\)[/tex].

Next, let's find [tex]\(q(2)\)[/tex] from the second table:

[tex]\[ \begin{array}{|c|c|} \hline x & q(x) \\ \hline 4 & 1 \\ \hline 2 & -2 \\ \hline -3 & 5 \\ \hline \end{array} \][/tex]

From this table, we see that when [tex]\(x = 2\)[/tex], [tex]\(q(x) = -2\)[/tex]. Therefore, [tex]\(q(2) = -2\)[/tex].

Now, to find [tex]\((p+q)(2)\)[/tex], we simply add [tex]\(p(2)\)[/tex] and [tex]\(q(2)\)[/tex]:

[tex]\[ (p+q)(2) = p(2) + q(2) = 3 + (-2) \][/tex]

Perform the addition:

[tex]\[ 3 + (-2) = 1 \][/tex]

Therefore, [tex]\((p+q)(2) = 1\)[/tex].