Use the distributive property to remove the parentheses.

[tex]\[ 4a^3(3 - 6a^4) \][/tex]

Simplify your answer as much as possible.



Answer :

Sure, let's simplify the expression [tex]\( 4a^3(3 - 6a^4) \)[/tex] using the distributive property.

1. Distribute [tex]\( 4a^3 \)[/tex] to both terms inside the parentheses:

[tex]\[ 4a^3 \cdot 3 - 4a^3 \cdot 6a^4 \][/tex]

2. Now, perform the multiplications:

[tex]\[ 4a^3 \cdot 3 = 12a^3 \][/tex]

[tex]\[ 4a^3 \cdot 6a^4 = 24a^7 \][/tex]

3. So, combining these results, we get:

[tex]\[ 12a^3 - 24a^7 \][/tex]

4. Factor out the common term [tex]\( a^3 \)[/tex]:

[tex]\[ a^3(12 - 24a^4) \][/tex]

Hence, the simplified expression is:

[tex]\[ a^3(12 - 24a^4) \][/tex]