Solve for [tex]$y$[/tex].

[tex]
y - 11 = -9 + \frac{24}{y}
[/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution."

[tex] y = [/tex]
No solution [tex]$\square$[/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the equation:

[tex]\[ y - 11 = -9 + \frac{24}{y} \][/tex]

we can follow these steps:

1. Isolate the variable terms: Move the terms involving [tex]\( y \)[/tex] on one side of the equation.

Start by adding 11 to both sides to simplify the left side:

[tex]\[ y - 11 + 11 = -9 + \frac{24}{y} + 11 \][/tex]

Simplifying the right side:

[tex]\[ y = 2 + \frac{24}{y} \][/tex]

2. Eliminate the fraction: Multiply every term by [tex]\( y \)[/tex] to remove the fraction.

[tex]\[ y \cdot y = y \cdot \left( 2 + \frac{24}{y} \right) \][/tex]

Distribute the [tex]\( y \)[/tex]:

[tex]\[ y^2 = 2y + 24 \][/tex]

3. Rewrite in standard quadratic form:

[tex]\[ y^2 - 2y - 24 = 0 \][/tex]

4. Factor the quadratic equation:

We need two numbers that multiply to [tex]\(-24\)[/tex] and add up to [tex]\(-2\)[/tex]. Those numbers are 4 and -6.

[tex]\[ y^2 - 2y - 24 = (y - 6)(y + 4) = 0 \][/tex]

5. Find the solutions: Set each factor equal to zero.

[tex]\[ y - 6 = 0 \quad \text{or} \quad y + 4 = 0 \][/tex]

6. Solve for each factor:

[tex]\[ y = 6 \quad \text{or} \quad y = -4 \][/tex]

Thus, the solutions to the equation are:

[tex]\[ y = -4, \, 6 \][/tex]