[tex]$\overline{PQ}$[/tex] is reflected across the line [tex]$x = -3$[/tex]. The coordinates of the endpoints of the image of [tex]$\overline{PQ}$[/tex] are [tex]$P^{\prime}(5,2)$[/tex] and [tex]$Q^{\prime}(2,4)$[/tex].

What are the coordinates of [tex]$Q$[/tex]?

A. [tex]$(1,4)$[/tex]
B. [tex]$(-3,4)$[/tex]
C. [tex]$(5,4)$[/tex]
D. [tex]$(-8,4)$[/tex]



Answer :

To determine the coordinates of point [tex]\( Q \)[/tex] before the reflection across the line [tex]\( x = -3 \)[/tex], we need to use the properties of reflections.

The reflection of a point [tex]\((x, y)\)[/tex] across a vertical line [tex]\( x = a \)[/tex] results in a new point whose coordinates are calculated as follows:

[tex]\[ (x', y') = (2a - x, y) \][/tex]

Given the point [tex]\(Q'\)[/tex] is [tex]\((2, 4)\)[/tex] after the reflection and considering the vertical line [tex]\( x = -3 \)[/tex], we need to find the original coordinates [tex]\( Q \)[/tex].

Since [tex]\( Q' \)[/tex] is [tex]\((2, 4)\)[/tex] reflected across the line [tex]\( x = -3 \)[/tex], we use the formula for the reflection:

[tex]\[ Q' = (2a - x, y) \][/tex]

Plugging in the values:

[tex]\[ Q' = (2 \cdot -3 - x, y) = (2, 4) \][/tex]

We need to solve for [tex]\( x \)[/tex]:

[tex]\[ 2(-3) - x = 2 \][/tex]

Simplifying this equation:

[tex]\[ -6 - x = 2 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ -x = 2 + 6 \][/tex]
[tex]\[ -x = 8 \][/tex]
[tex]\[ x = -8 \][/tex]

Since the [tex]\( y \)[/tex]-coordinate does not change, [tex]\( y = 4 \)[/tex]. Therefore, the coordinates of point [tex]\( Q \)[/tex] are:

[tex]\( (-8, 4) \)[/tex]

Thus, the answer is [tex]\((D) (-8, 4)\)[/tex].