Which of the following expressions are equivalent to [tex]\frac{16}{5}[/tex]?

Choose all answers that apply:

A. [tex]-\left(\frac{16}{5}\right)[/tex]
B. [tex]-\frac{-16}{-5}[/tex]
C. None of the above



Answer :

To determine which of the given expressions are equivalent to [tex]\(\frac{16}{5}\)[/tex]:

### Option A: [tex]\(-\left(\frac{16}{5}\right)\)[/tex]

1. Evaluate [tex]\(\frac{16}{5}\)[/tex]:
[tex]\[ \frac{16}{5} = 3.2 \][/tex]

2. Apply the negative sign to the evaluated expression:
[tex]\[ -\left(\frac{16}{5}\right) = -3.2 \][/tex]

3. Compare the result to the original expression:
[tex]\[ -3.2 \neq 3.2 \][/tex]

Thus, Option A is not equivalent to [tex]\(\frac{16}{5}\)[/tex].

### Option B: [tex]\(-\frac{-16}{-5}\)[/tex]

1. Evaluate the expression inside the fraction:
[tex]\[ \frac{-16}{-5} = \frac{16}{5} = 3.2 \][/tex]

2. Apply the negative sign:
[tex]\[ -\left(\frac{16}{5}\right) = -3.2 \][/tex]

3. Compare the result to the original expression:
[tex]\[ -3.2 \neq 3.2 \][/tex]

Thus, Option B is not equivalent to [tex]\(\frac{16}{5}\)[/tex].

### Option C: None of the above

Since neither Option A nor Option B is equivalent to [tex]\(\frac{16}{5}\)[/tex], we conclude that none of the given expressions are equivalent to [tex]\(\frac{16}{5}\)[/tex].

Therefore, the correct answer is:
C: None of the above.