To determine which of the given expressions are equivalent to [tex]\(\frac{16}{5}\)[/tex]:
### Option A: [tex]\(-\left(\frac{16}{5}\right)\)[/tex]
1. Evaluate [tex]\(\frac{16}{5}\)[/tex]:
[tex]\[
\frac{16}{5} = 3.2
\][/tex]
2. Apply the negative sign to the evaluated expression:
[tex]\[
-\left(\frac{16}{5}\right) = -3.2
\][/tex]
3. Compare the result to the original expression:
[tex]\[
-3.2 \neq 3.2
\][/tex]
Thus, Option A is not equivalent to [tex]\(\frac{16}{5}\)[/tex].
### Option B: [tex]\(-\frac{-16}{-5}\)[/tex]
1. Evaluate the expression inside the fraction:
[tex]\[
\frac{-16}{-5} = \frac{16}{5} = 3.2
\][/tex]
2. Apply the negative sign:
[tex]\[
-\left(\frac{16}{5}\right) = -3.2
\][/tex]
3. Compare the result to the original expression:
[tex]\[
-3.2 \neq 3.2
\][/tex]
Thus, Option B is not equivalent to [tex]\(\frac{16}{5}\)[/tex].
### Option C: None of the above
Since neither Option A nor Option B is equivalent to [tex]\(\frac{16}{5}\)[/tex], we conclude that none of the given expressions are equivalent to [tex]\(\frac{16}{5}\)[/tex].
Therefore, the correct answer is:
C: None of the above.