Let's evaluate the expression [tex]\( x(x + y)^2 \)[/tex] step by step, given the values [tex]\( x = 4, y = -2, z = -1 \)[/tex].
1. Compute the value inside the parentheses [tex]\( x + y \)[/tex]:
[tex]\[
x + y = 4 + (-2) = 4 - 2 = 2
\][/tex]
2. Square the result of [tex]\( x + y \)[/tex]:
[tex]\[
(x + y)^2 = 2^2 = 4
\][/tex]
3. Multiply the squared value by [tex]\( x \)[/tex]:
[tex]\[
x(x + y)^2 = 4 \times 4 = 16
\][/tex]
Thus, the value of [tex]\( x(x + y)^2 \)[/tex] is 16. Since the answer 16 is not listed in the provided choices a, b, c, or d, we select:
d) Answer not given