If [tex]$x=4, y=-2, z=-1$[/tex], then evaluate: [tex]$x(x+y)^2$[/tex].

A. 36
B. [tex][tex]$147$[/tex][/tex]
C. 3
D. Answer not given



Answer :

Let's evaluate the expression [tex]\( x(x + y)^2 \)[/tex] step by step, given the values [tex]\( x = 4, y = -2, z = -1 \)[/tex].

1. Compute the value inside the parentheses [tex]\( x + y \)[/tex]:

[tex]\[ x + y = 4 + (-2) = 4 - 2 = 2 \][/tex]

2. Square the result of [tex]\( x + y \)[/tex]:

[tex]\[ (x + y)^2 = 2^2 = 4 \][/tex]

3. Multiply the squared value by [tex]\( x \)[/tex]:

[tex]\[ x(x + y)^2 = 4 \times 4 = 16 \][/tex]

Thus, the value of [tex]\( x(x + y)^2 \)[/tex] is 16. Since the answer 16 is not listed in the provided choices a, b, c, or d, we select:

d) Answer not given