Answer :
Let's simplify each given expression step-by-step.
1. Simplifying [tex]\(\sqrt{50 x^2}\)[/tex]:
[tex]\[ \sqrt{50 x^2} = \sqrt{25 \cdot 2 \cdot x^2} \][/tex]
The expression can be further simplified using the property of square roots:
[tex]\[ \sqrt{25 \cdot 2 \cdot x^2} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{x^2} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex] for [tex]\(x \geq 0\)[/tex]:
[tex]\[ \sqrt{25 \cdot 2 \cdot x^2} = 5x \sqrt{2} \][/tex]
Thus, [tex]\(b = 2\)[/tex].
2. Simplifying [tex]\(\sqrt{32 x}\)[/tex]:
[tex]\[ \sqrt{32 x} = \sqrt{16 \cdot 2 \cdot x} \][/tex]
Similar to the previous step:
[tex]\[ \sqrt{16 \cdot 2 \cdot x} = \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{x} \][/tex]
Since [tex]\(\sqrt{16} = 4\)[/tex]:
[tex]\[ \sqrt{16 \cdot 2 \cdot x} = 4 \cdot \sqrt{2x} \][/tex]
Thus, [tex]\(c = 4\)[/tex].
3. Simplifying [tex]\(\sqrt{18 n}\)[/tex]:
[tex]\[ \sqrt{18 n} = \sqrt{9 \cdot 2 \cdot n} \][/tex]
Using the same property:
[tex]\[ \sqrt{9 \cdot 2 \cdot n} = \sqrt{9} \cdot \sqrt{2} \cdot \sqrt{n} \][/tex]
Since [tex]\(\sqrt{9} = 3\)[/tex]:
[tex]\[ \sqrt{9 \cdot 2 \cdot n} = 3 \sqrt{2n} \][/tex]
Thus, [tex]\(e = 3\)[/tex].
4. Simplifying [tex]\(\sqrt{72 x^2}\)[/tex]:
[tex]\[ \sqrt{72 x^2} = \sqrt{36 \cdot 2 \cdot x^2} \][/tex]
Again, applying the square root properties:
[tex]\[ \sqrt{36 \cdot 2 \cdot x^2} = \sqrt{36} \cdot \sqrt{2} \cdot \sqrt{x^2} \][/tex]
Since [tex]\(\sqrt{36} = 6\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex] for [tex]\(x \geq 0\)[/tex]:
[tex]\[ \sqrt{36 \cdot 2 \cdot x^2} = 6x \cdot \sqrt{2} \][/tex]
Thus, [tex]\(g = 6\)[/tex].
Therefore, the values for the variables are:
[tex]\[ \begin{array}{l} b = 2 \\ c = 4 \\ e = 3 \\ g = 6 \\ \end{array} \][/tex]
1. Simplifying [tex]\(\sqrt{50 x^2}\)[/tex]:
[tex]\[ \sqrt{50 x^2} = \sqrt{25 \cdot 2 \cdot x^2} \][/tex]
The expression can be further simplified using the property of square roots:
[tex]\[ \sqrt{25 \cdot 2 \cdot x^2} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{x^2} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex] for [tex]\(x \geq 0\)[/tex]:
[tex]\[ \sqrt{25 \cdot 2 \cdot x^2} = 5x \sqrt{2} \][/tex]
Thus, [tex]\(b = 2\)[/tex].
2. Simplifying [tex]\(\sqrt{32 x}\)[/tex]:
[tex]\[ \sqrt{32 x} = \sqrt{16 \cdot 2 \cdot x} \][/tex]
Similar to the previous step:
[tex]\[ \sqrt{16 \cdot 2 \cdot x} = \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{x} \][/tex]
Since [tex]\(\sqrt{16} = 4\)[/tex]:
[tex]\[ \sqrt{16 \cdot 2 \cdot x} = 4 \cdot \sqrt{2x} \][/tex]
Thus, [tex]\(c = 4\)[/tex].
3. Simplifying [tex]\(\sqrt{18 n}\)[/tex]:
[tex]\[ \sqrt{18 n} = \sqrt{9 \cdot 2 \cdot n} \][/tex]
Using the same property:
[tex]\[ \sqrt{9 \cdot 2 \cdot n} = \sqrt{9} \cdot \sqrt{2} \cdot \sqrt{n} \][/tex]
Since [tex]\(\sqrt{9} = 3\)[/tex]:
[tex]\[ \sqrt{9 \cdot 2 \cdot n} = 3 \sqrt{2n} \][/tex]
Thus, [tex]\(e = 3\)[/tex].
4. Simplifying [tex]\(\sqrt{72 x^2}\)[/tex]:
[tex]\[ \sqrt{72 x^2} = \sqrt{36 \cdot 2 \cdot x^2} \][/tex]
Again, applying the square root properties:
[tex]\[ \sqrt{36 \cdot 2 \cdot x^2} = \sqrt{36} \cdot \sqrt{2} \cdot \sqrt{x^2} \][/tex]
Since [tex]\(\sqrt{36} = 6\)[/tex] and [tex]\(\sqrt{x^2} = x\)[/tex] for [tex]\(x \geq 0\)[/tex]:
[tex]\[ \sqrt{36 \cdot 2 \cdot x^2} = 6x \cdot \sqrt{2} \][/tex]
Thus, [tex]\(g = 6\)[/tex].
Therefore, the values for the variables are:
[tex]\[ \begin{array}{l} b = 2 \\ c = 4 \\ e = 3 \\ g = 6 \\ \end{array} \][/tex]