Convert [tex]\( 0 . \overline{393} \)[/tex] into a fraction.

1. Assign the decimal to a variable:
[tex]\[
x = 0 . \overline{393}
\][/tex]

2. It has 3 repeating digits. Multiply by [tex]\( 10^3 \)[/tex]:
[tex]\[
\begin{aligned}
1000x & = 0 . \overline{393} \times 1000 \\
1000x & = 393 . \overline{393}
\end{aligned}
\][/tex]

3. Subtract the equation [tex]\( x = 0 . \overline{393} \)[/tex] from [tex]\( 1000x = 393 . \overline{393} \)[/tex]:
[tex]\[
\begin{aligned}
1000x - x & = 393 . \overline{393} - 0 . \overline{393} \\
999x & = 393
\end{aligned}
\][/tex]

4. Solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{393}{999}
\][/tex]

Simplify the fraction:
[tex]\[
x = \frac{131}{333}
\][/tex]

Thus, [tex]\( 0 . \overline{393} \)[/tex] as a fraction is:
[tex]\[
x = \frac{131}{333}
\][/tex]



Answer :

To convert the repeating decimal [tex]\(0.\overline{393}\)[/tex] into a fraction, follow these steps precisely:

1. Assign the repeating decimal to a variable:
[tex]\[ x = 0.\overline{393} \][/tex]

2. Since there are 3 repeating digits (393), multiply both sides of the equation by [tex]\(10^3 = 1000\)[/tex]:
[tex]\[ 1000x = 393.\overline{393} \][/tex]

3. Now you have two equations:
[tex]\[ \begin{aligned} 1000x &= 393.\overline{393} \\ x &= 0.\overline{393} \end{aligned} \][/tex]

4. Subtract the second equation from the first equation to eliminate the repeating part:
[tex]\[ \begin{aligned} 1000x - x &= 393.\overline{393} - 0.\overline{393} \\ 999x &= 393 \end{aligned} \][/tex]

5. To solve for [tex]\(x\)[/tex], divide both sides of the equation by 999:
[tex]\[ x = \frac{393}{999} \][/tex]

6. Simplify the fraction [tex]\(\frac{393}{999}\)[/tex] by finding the greatest common divisor (GCD) of 393 and 999.

Both 393 and 999 are divisible by 3:
[tex]\[ \frac{393 \div 3}{999 \div 3} = \frac{131}{333} \][/tex]

The GCD of 131 and 333 is 1.

Thus, the fraction [tex]\(\frac{131}{333}\)[/tex] is already in its simplest form.

So, the value of [tex]\(x = 0.\overline{393}\)[/tex] as a fraction is:
[tex]\[ \boxed{\frac{131}{333}} \][/tex]