Quantitative Analysis

a) If [tex]\(\left( \begin{array}{cc} 3x + y & 0 \\ 0 & x - y \end{array} \right) - \left( \begin{array}{ll} 7 & 0 \\ 0 & 1 \end{array} \right)\)[/tex], find [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

b) Evaluate [tex]\(\left( \begin{array}{ll} 3 & 5 \\ 2 & 7 \end{array} \right) + 2\left( \begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array} \right) - \left( \begin{array}{ll} 5 & 9 \\ 8 & 15 \end{array} \right)\)[/tex].

c) Find [tex]\(0^2 + 30\)[/tex] if [tex]\(3x \left( \begin{array}{ll} 1 & 3 \\ 5 & 7 \end{array} \right) = 3x\)[/tex].



Answer :

Certainly! Let's go through each part step-by-step to arrive at the solution.

### Part a) Finding [tex]\( x \)[/tex] and [tex]\( y \)[/tex]

We are given the matrix equation:

[tex]\[ \left( \begin{array}{cc} 3x + y & 0 \\ 0 & x - y \end{array} \right) - \left( \begin{array}{cc} 7 & 0 \\ 0 & 1 \end{array} \right) = \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \][/tex]

To solve this, we equate the corresponding elements from the left-hand side and the right-hand side of the equation. This gives us the following equations:

[tex]\[ 3x + y - 7 = 0 \][/tex]

[tex]\[ x - y - 1 = 0 \][/tex]

From the first equation, we have:

[tex]\[ 3x + y = 7 \][/tex]

From the second equation, we have:

[tex]\[ x - y = 1 \][/tex]

Now we solve these two equations simultaneously. Adding these two equations, we get:

[tex]\[ 3x + y + x - y = 7 + 1 \implies 4x = 8 \implies x = 2 \][/tex]

Substitute [tex]\( x = 2 \)[/tex] back into the second equation:

[tex]\[ 2 - y = 1 \implies y = 1 \][/tex]

Therefore, the solutions are [tex]\( x = 2 \)[/tex] and [tex]\( y = 1 \)[/tex].

### Part b) Evaluating the Matrix Expression

We need to evaluate the following expression:

[tex]\[ \left( \begin{array}{cc} 3 & 5 \\ 2 & 7 \end{array} \right) + 2 \left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right) - \left( \begin{array}{cc} 5 & 9 \\ 8 & 15 \end{array} \right) \][/tex]

First, compute the scalar multiplication:

[tex]\[ 2 \left( \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right) = \left( \begin{array}{cc} 2 \times 1 & 2 \times 2 \\ 2 \times 3 & 2 \times 4 \end{array} \right) = \left( \begin{array}{cc} 2 & 4 \\ 6 & 8 \end{array} \right) \][/tex]

Next, perform the matrix addition and subtraction:

[tex]\[ \left( \begin{array}{cc} 3 & 5 \\ 2 & 7 \end{array} \right) + \left( \begin{array}{cc} 2 & 4 \\ 6 & 8 \end{array} \right) = \left( \begin{array}{cc} 3 + 2 & 5 + 4 \\ 2 + 6 & 7 + 8 \end{array} \right) = \left( \begin{array}{cc} 5 & 9 \\ 8 & 15 \end{array} \right) \][/tex]

Subtracting the final matrix:

[tex]\[ \left( \begin{array}{cc} 5 & 9 \\ 8 & 15 \end{array} \right) - \left( \begin{array}{cc} 5 & 9 \\ 8 & 15 \end{array} \right) = \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \][/tex]

Therefore, the result of the matrix expression is:

[tex]\[ \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \][/tex]

### Part c) Evaluating [tex]\( 0^2 + 30 \)[/tex]

It is given to find [tex]\( 0^2 + 30 \)[/tex].

Let's compute that directly:

[tex]\[ 0^2 = 0 \][/tex]

Adding 30:

[tex]\[ 0 + 30 = 30 \][/tex]

Therefore, the result is:

[tex]\[ 30 \][/tex]

### Summary

- The values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( y = 1 \)[/tex].
- The result of the matrix evaluation is [tex]\( \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \)[/tex].
- The result of [tex]\( 0^2 + 30 \)[/tex] is [tex]\( 30 \)[/tex].