If [tex]f(x) = 3 - 2x[/tex] and [tex]g(x) = \frac{1}{x + 5}[/tex], what is the value of [tex]\left(\frac{f}{g}\right)(8)[/tex]?

A. -169
B. -1
C. 13
D. 104



Answer :

Let's find the value of [tex]\(\left( \frac{f}{g} \right)(8)\)[/tex] given the functions [tex]\( f(x) = 3 - 2x \)[/tex] and [tex]\( g(x) = \frac{1}{x + 5} \)[/tex].

1. Evaluate [tex]\( f(8) \)[/tex]:

[tex]\[ f(8) = 3 - 2 \cdot 8 \][/tex]
[tex]\[ f(8) = 3 - 16 \][/tex]
[tex]\[ f(8) = -13 \][/tex]

2. Evaluate [tex]\( g(8) \)[/tex]:

[tex]\[ g(8) = \frac{1}{8 + 5} \][/tex]
[tex]\[ g(8) = \frac{1}{13} \][/tex]

3. Calculate [tex]\(\left( \frac{f}{g} \right)(8)\)[/tex]:

[tex]\[ \left( \frac{f}{g} \right)(8) = \frac{f(8)}{g(8)} \][/tex]
[tex]\[ \left( \frac{f}{g} \right)(8) = \frac{-13}{\frac{1}{13}} \][/tex]

4. Simplify the fraction:

[tex]\[ \left( \frac{f}{g} \right)(8) = -13 \times 13 \][/tex]
[tex]\[ \left( \frac{f}{g} \right)(8) = -169 \][/tex]

Therefore, the value of [tex]\(\left( \frac{f}{g} \right)(8)\)[/tex] is [tex]\(\boxed{-169}\)[/tex].