If [tex]f(x)=16x-30[/tex] and [tex]g(x)=14x-6[/tex], for which value of [tex]x[/tex] does [tex](f-g)(x)=0[/tex]?

A. [tex]\(-18\)[/tex]

B. [tex]\(-12\)[/tex]

C. [tex]\(12\)[/tex]

D. [tex]\(18\)[/tex]



Answer :

To determine the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\((f-g)(x) = 0\)[/tex], we need to follow these steps:

1. Start with the definitions of the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = 16x - 30 \][/tex]
[tex]\[ g(x) = 14x - 6 \][/tex]

2. Define the function [tex]\((f-g)(x)\)[/tex], which is the difference between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ (f-g)(x) = f(x) - g(x) \][/tex]

3. Substitute the expressions for [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] into this equation:
[tex]\[ (f-g)(x) = (16x - 30) - (14x - 6) \][/tex]

4. Simplify the equation by distributing the subtraction:
[tex]\[ (f-g)(x) = 16x - 30 - 14x + 6 \][/tex]

5. Combine like terms:
[tex]\[ (f-g)(x) = (16x - 14x) + (-30 + 6) \][/tex]
[tex]\[ (f-g)(x) = 2x - 24 \][/tex]

6. Set [tex]\((f-g)(x)\)[/tex] equal to 0 and solve for [tex]\( x \)[/tex]:
[tex]\[ 2x - 24 = 0 \][/tex]

7. Add 24 to both sides of the equation:
[tex]\[ 2x = 24 \][/tex]

8. Finally, divide both sides by 2 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = 12 \][/tex]

Thus, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\((f-g)(x) = 0\)[/tex] is [tex]\( 12 \)[/tex]. The correct option is:
[tex]\[ \boxed{12} \][/tex]