Simplify the radicals in the given expression:

[tex]\[8 \sqrt[3]{a^4 b^3 c^2}-14 a b \sqrt[3]{a c^2}\][/tex]

A. [tex]\(8 a b \sqrt{a c^2}-14 a b \sqrt[3]{a c^2}\)[/tex]

B. [tex]\(8 a^2 b c \sqrt[3]{b}-14 a b c \sqrt[3]{a}\)[/tex]

C. [tex]\(8 a b \sqrt[3]{a c^2}-14 a b \sqrt[3]{a c^2}\)[/tex]

D. [tex]\(8 a^2 b c \sqrt{b}-14 a b c \sqrt{a}\)[/tex]



Answer :

Let us simplify the given expressions step-by-step.

### Expression 1

[tex]\[ 8 \sqrt[3]{a^4 b^3 c^2} - 14 a b \sqrt[3]{a c^2} \][/tex]

First, let's rewrite each term to make the cube roots more explicit:

1. [tex]\( 8 \sqrt[3]{a^4 b^3 c^2} = 8 \cdot (a^4 b^3 c^2)^{1/3} = 8 \cdot a^{4/3} b c^{2/3} \)[/tex]
2. [tex]\( 14 a b \sqrt[3]{a c^2} = 14 a b \cdot (a c^2)^{1/3} = 14 a b \cdot a^{1/3} c^{2/3} = 14 a^{4/3} b c^{2/3} \)[/tex]

So the expression becomes:

[tex]\[ 8 a^{4/3} b c^{2/3} - 14 a^{4/3} b c^{2/3} \][/tex]

Combine the like terms:

[tex]\[ (8 - 14) a^{4/3} b c^{2/3} = -6 a^{4/3} b c^{2/3} \][/tex]

### Expression 2

[tex]\[ 8 a b \sqrt[3]{a c^2} - 14 a b \sqrt[3]{a c^2} \][/tex]

These terms are like terms. Using the properties of cube roots:

1. [tex]\( 8 a b \sqrt[3]{a c^2} = 8 a b (a c^2)^{1/3} \)[/tex]
2. [tex]\( 14 a b \sqrt[3]{a c^2} = 14 a b (a c^2)^{1/3} \)[/tex]

So, once they are like terms:

[tex]\[ (8 - 14) a b (a c^2)^{1/3} = -6 a b (a c^2)^{1/3} \][/tex]

### Expression 3

[tex]\[ 8 a^2 b c \sqrt[3]{b} - 14 a b c \sqrt[3]{a} \][/tex]

Rewrite these terms to make the cube roots more explicit:

1. [tex]\( 8 a^2 b c \sqrt[3]{b} = 8 a^2 b c b^{1/3} = 8 a^2 b^{4/3} c \)[/tex]
2. [tex]\( 14 a b c \sqrt[3]{a} = 14 a b c a^{1/3} = 14 a^{4/3} b c \)[/tex]

So the expression does not combine directly:

[tex]\[ 8 a^2 b^{4/3} c - 14 a^{4/3} b c \][/tex]

### Expression 4

[tex]\[ 8 a b \sqrt[3]{a c^2} - 14 a b \sqrt[3]{a c^2} \][/tex]

These terms are the same as in Expression 2:

1. [tex]\( 8 a b \sqrt[3]{a c^2} = 8 a b (a c^2)^{1/3} \)[/tex]
2. [tex]\( 14 a b \sqrt[3]{a c^2} = 14 a b (a c^2)^{1/3} \)[/tex]

So:

[tex]\[ (8 - 14) a b (a c^2)^{1/3} = -6 a b (a c^2)^{1/3} \][/tex]

### Expression 5

[tex]\[ 8 a^2 b c \sqrt{b} - 14 a b c \sqrt{a} \][/tex]

Rewrite these terms:

1. [tex]\( 8 a^2 b c \sqrt{b} = 8 a^2 b c b^{1/2} = 8 a^2 b^{3/2} c \)[/tex]
2. [tex]\( 14 a b c \sqrt{a} = 14 a b c a^{1/2} = 14 a^{3/2} b c \)[/tex]

So the expression does not combine directly:

[tex]\[ 8 a^2 b^{3/2} c - 14 a^{3/2} b c \][/tex]

To summarize, here are the simplified results for each expression:
1. [tex]\(-6 a^{4/3} b c^{2/3}\)[/tex]
2. [tex]\(-6 a b (a c^2)^{1/3}\)[/tex]
3. [tex]\(8 a^2 b^{4/3} c - 14 a^{4/3} b c\)[/tex]
4. [tex]\(-6 a b (a c^2)^{1/3}\)[/tex]
5. [tex]\(8 a^2 b^{3/2} c - 14 a^{3/2} b c\)[/tex]

These are the simplified forms of the radicals in each of the given expressions.

Other Questions