Identify the properties of the given quadratic.

[tex]\[ y = -3x^2 + 6x + 17 \][/tex]

a: [tex]$\square$[/tex]

b: [tex]$\qquad$[/tex]

c: [tex]$\square$[/tex]



Answer :

Certainly! Let's identify the properties of the quadratic equation given by [tex]\( y = -3x^2 + 6x + 17 \)[/tex].

### Step 1: Identify the coefficients
The general form of a quadratic equation is [tex]\( y = ax^2 + bx + c \)[/tex].
In this equation:
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 6 \)[/tex]
- [tex]\( c = 17 \)[/tex]

### Step 2: Calculate the vertex
The vertex [tex]\((h, k)\)[/tex] of a quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex] can be found using the formulas:
[tex]\[ h = -\frac{b}{2a} \][/tex]
[tex]\[ k = a \cdot h^2 + b \cdot h + c \][/tex]

For our given equation:
[tex]\[ h = -\frac{6}{2 \cdot (-3)} = -\frac{6}{-6} = 1 \][/tex]

Next, we find [tex]\( k \)[/tex]:
[tex]\[ k = -3 \cdot (1)^2 + 6 \cdot 1 + 17 = -3 \cdot 1 + 6 \cdot 1 + 17 = -3 + 6 + 17 = 20 \][/tex]

So, the vertex is [tex]\((1.0, 20.0)\)[/tex].

### Step 3: Axis of symmetry
The axis of symmetry for a quadratic equation is given by the line [tex]\( x = h \)[/tex].

For our equation:
[tex]\[ x = 1 \][/tex]

### Step 4: Determine the direction of opening
The direction in which the parabola opens depends on the coefficient [tex]\( a \)[/tex]:
- If [tex]\( a \)[/tex] is positive, the parabola opens upwards.
- If [tex]\( a \)[/tex] is negative, the parabola opens downwards.

For our equation, [tex]\( a = -3 \)[/tex], which is negative. Thus, the parabola opens downwards.

### Summary
- Vertex (h, k): [tex]\((1.0, 20.0)\)[/tex]
- Axis of symmetry: [tex]\( x = 1 \)[/tex]
- Direction of opening: Downwards

By carefully following these steps, we have identified the key properties of the quadratic equation [tex]\( y = -3x^2 + 6x + 17 \)[/tex].