What is the product of [tex]$3a + 5$[/tex] and [tex]$2a^2 + 4a - 2$[/tex]?

A. [tex]6a^3 + 22a^2 + 14a - 10[/tex]

B. [tex]6a^3 + 22a^2 + 26a - 10[/tex]

C. [tex]18a^3 + 10a^2 + 14a - 10[/tex]

D. [tex]28a^3 + 14a - 10[/tex]



Answer :

Let's find the product of the expressions [tex]\(3a + 5\)[/tex] and [tex]\(2a^2 + 4a - 2\)[/tex] step-by-step.

We'll use the distributive property (also known as the FOIL method for binomials, but extended here):

1. Distribute each term in [tex]\(3a + 5\)[/tex] to every term in [tex]\(2a^2 + 4a - 2\)[/tex]:
[tex]\[ (3a + 5) \cdot (2a^2 + 4a - 2) \][/tex]

2. Distribute [tex]\(3a\)[/tex] to each term in [tex]\(2a^2 + 4a - 2\)[/tex]:
[tex]\[ 3a \cdot 2a^2 + 3a \cdot 4a + 3a \cdot (-2) \][/tex]

Calculate each term:
[tex]\[ 3a \cdot 2a^2 = 6a^3 \][/tex]
[tex]\[ 3a \cdot 4a = 12a^2 \][/tex]
[tex]\[ 3a \cdot (-2) = -6a \][/tex]

3. Distribute [tex]\(5\)[/tex] to each term in [tex]\(2a^2 + 4a - 2\)[/tex]:
[tex]\[ 5 \cdot 2a^2 + 5 \cdot 4a + 5 \cdot (-2) \][/tex]

Calculate each term:
[tex]\[ 5 \cdot 2a^2 = 10a^2 \][/tex]
[tex]\[ 5 \cdot 4a = 20a \][/tex]
[tex]\[ 5 \cdot (-2) = -10 \][/tex]

4. Combine all the terms together:
[tex]\[ 6a^3 + 12a^2 - 6a + 10a^2 + 20a - 10 \][/tex]

5. Combine like terms:
[tex]\[ 6a^3 + (12a^2 + 10a^2) + (-6a + 20a) - 10 \][/tex]

Simplify each group of like terms:
[tex]\[ 6a^3 + 22a^2 + 14a - 10 \][/tex]

Thus, the product of [tex]\(3a + 5\)[/tex] and [tex]\(2a^2 + 4a - 2\)[/tex] is [tex]\(\boxed{6a^3 + 22a^2 + 14a - 10}\)[/tex].