What is the value of [tex]$x$[/tex] in the equation [tex]$3x - 31 = 76$[/tex]?

A. [tex]-\frac{107}{3}[/tex]

B. [tex]-15[/tex]

C. 15

D. [tex]\frac{107}{3}[/tex]



Answer :

To solve the equation [tex]\(3x - 31 = 76\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Isolate the term with [tex]\(x\)[/tex]:
Start by adding 31 to both sides of the equation to get rid of the constant term on the left side.
[tex]\[ 3x - 31 + 31 = 76 + 31 \][/tex]
This simplifies to:
[tex]\[ 3x = 107 \][/tex]

2. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 3.
[tex]\[ x = \frac{107}{3} \][/tex]

3. Find the value:
The fraction [tex]\(\frac{107}{3}\)[/tex] simplifies to approximately [tex]\(35.666666666666664\)[/tex].

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(\frac{107}{3}\)[/tex].

Given the multiple-choice answers:
- [tex]\(-\frac{107}{3}\)[/tex]
- [tex]\(-15\)[/tex]
- 15
- [tex]\(\frac{107}{3}\)[/tex]

The correct answer is [tex]\(\frac{107}{3}\)[/tex].