To solve the equation [tex]\(3x - 31 = 76\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Isolate the term with [tex]\(x\)[/tex]:
Start by adding 31 to both sides of the equation to get rid of the constant term on the left side.
[tex]\[
3x - 31 + 31 = 76 + 31
\][/tex]
This simplifies to:
[tex]\[
3x = 107
\][/tex]
2. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], divide both sides of the equation by 3.
[tex]\[
x = \frac{107}{3}
\][/tex]
3. Find the value:
The fraction [tex]\(\frac{107}{3}\)[/tex] simplifies to approximately [tex]\(35.666666666666664\)[/tex].
Therefore, the value of [tex]\(x\)[/tex] is [tex]\(\frac{107}{3}\)[/tex].
Given the multiple-choice answers:
- [tex]\(-\frac{107}{3}\)[/tex]
- [tex]\(-15\)[/tex]
- 15
- [tex]\(\frac{107}{3}\)[/tex]
The correct answer is [tex]\(\frac{107}{3}\)[/tex].