Answer :
Let's go through the expression step-by-step and identify where Sandy made an error.
The given expression is:
[tex]\[ (-2)^3(6-3) - 5(2+3) \][/tex]
1. Evaluate [tex]\((-2)^3\)[/tex]:
- [tex]\((-2)^3 = -8\)[/tex] (Sandy incorrectly evaluated it as 8).
2. Evaluate the subtraction [tex]\(6-3\)[/tex]:
- [tex]\(6 - 3 = 3\)[/tex]
3. Multiply [tex]\((-2)^3\)[/tex] by the result of [tex]\(6-3\)[/tex]:
- [tex]\((-8) \times 3 = -24\)[/tex]
4. Evaluate the addition [tex]\(2+3\)[/tex]:
- [tex]\(2 + 3 = 5\)[/tex]
5. Multiply 5 by the result of [tex]\(2+3\)[/tex]:
- [tex]\(5 \times 5 = 25\)[/tex]
6. Subtract the result of the second multiplication from the result of the first multiplication:
- [tex]\(-24 - 25 = -49\)[/tex]
So, Sandy's error was incorrectly evaluating [tex]\((-2)^3\)[/tex] as 8 instead of [tex]\(-8\)[/tex].
Thus, the correct answer is:
Sandy's error was that he evaluated [tex]\((-2)^3\)[/tex] as 8 instead of [tex]\(-8\)[/tex].
The given expression is:
[tex]\[ (-2)^3(6-3) - 5(2+3) \][/tex]
1. Evaluate [tex]\((-2)^3\)[/tex]:
- [tex]\((-2)^3 = -8\)[/tex] (Sandy incorrectly evaluated it as 8).
2. Evaluate the subtraction [tex]\(6-3\)[/tex]:
- [tex]\(6 - 3 = 3\)[/tex]
3. Multiply [tex]\((-2)^3\)[/tex] by the result of [tex]\(6-3\)[/tex]:
- [tex]\((-8) \times 3 = -24\)[/tex]
4. Evaluate the addition [tex]\(2+3\)[/tex]:
- [tex]\(2 + 3 = 5\)[/tex]
5. Multiply 5 by the result of [tex]\(2+3\)[/tex]:
- [tex]\(5 \times 5 = 25\)[/tex]
6. Subtract the result of the second multiplication from the result of the first multiplication:
- [tex]\(-24 - 25 = -49\)[/tex]
So, Sandy's error was incorrectly evaluating [tex]\((-2)^3\)[/tex] as 8 instead of [tex]\(-8\)[/tex].
Thus, the correct answer is:
Sandy's error was that he evaluated [tex]\((-2)^3\)[/tex] as 8 instead of [tex]\(-8\)[/tex].