What is the product of [tex]$2x + y$[/tex] and [tex]$5x - y + 3$[/tex]?

[tex]x^2 + \square + \square + y^2 + \square y + \square xy + x - \square + \square y[/tex]



Answer :

To find the product of the expressions [tex]\(2x + y\)[/tex] and [tex]\(5x - y + 3\)[/tex], let's follow the steps for polynomial multiplication.

Given:
[tex]\[ (2x + y) \cdot (5x - y + 3) \][/tex]

We use the distributive property to expand this product.

1. Distribute [tex]\(2x\)[/tex] to each term inside the second parenthesis:
[tex]\[ 2x \cdot (5x - y + 3) = 2x \cdot 5x + 2x \cdot (-y) + 2x \cdot 3 \][/tex]

Calculating each term:
[tex]\[ 2x \cdot 5x = 10x^2 \][/tex]
[tex]\[ 2x \cdot (-y) = -2xy \][/tex]
[tex]\[ 2x \cdot 3 = 6x \][/tex]

So, the result of distributing [tex]\(2x\)[/tex] is:
[tex]\[ 10x^2 - 2xy + 6x \][/tex]

2. Distribute [tex]\(y\)[/tex] to each term inside the second parenthesis:
[tex]\[ y \cdot (5x - y + 3) = y \cdot 5x + y \cdot (-y) + y \cdot 3 \][/tex]

Calculating each term:
[tex]\[ y \cdot 5x = 5xy \][/tex]
[tex]\[ y \cdot (-y) = -y^2 \][/tex]
[tex]\[ y \cdot 3 = 3y \][/tex]

So, the result of distributing [tex]\(y\)[/tex] is:
[tex]\[ 5xy - y^2 + 3y \][/tex]

3. Now, we combine all the terms from steps 1 and 2:
[tex]\[ (10x^2 - 2xy + 6x) + (5xy - y^2 + 3y) \][/tex]

4. Combine like terms:
[tex]\[ 10x^2 + (-2xy + 5xy) + 6x - y^2 + 3y \][/tex]
[tex]\[ 10x^2 + 3xy + 6x - y^2 + 3y \][/tex]

Therefore, the product of [tex]\(2x + y\)[/tex] and [tex]\(5x - y + 3\)[/tex] is:
[tex]\[ 10x^2 + 3xy + 6x - y^2 + 3y \][/tex]

So, filling in the blanks in the equation provided, we get:
[tex]\[ x^2 + \boxed{9} + \boxed{} + 3xy + \boxed{-1} y^2 + \boxed{3} y \boxed{10x^2} + x - \boxed{-2xy} \boxed{} \][/tex]