If [tex]f(x)=x^4-x^3+x^2[/tex] and [tex]g(x)=-x^2[/tex], where [tex]x \neq 0[/tex], what is [tex](f / g)(x)[/tex]?

A. [tex]x^2-x+1[/tex]
B. [tex]x^2+x+1[/tex]
C. [tex]-x^2+x-1[/tex]
D. [tex]-x^2-x-1[/tex]



Answer :

Let [tex]\( f(x) \)[/tex] be defined as:
[tex]\[ f(x) = x^4 - x^3 + x^2 \][/tex]

Let [tex]\( g(x) \)[/tex] be defined as:
[tex]\[ g(x) = -x^2 \][/tex]

We are asked to find the expression for [tex]\(\left( \frac{f}{g} \right)(x)\)[/tex].

First, we will divide [tex]\( f(x) \)[/tex] by [tex]\( g(x) \)[/tex]:
[tex]\[ \left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} \][/tex]
[tex]\[ = \frac{x^4 - x^3 + x^2}{-x^2} \][/tex]

We can separate the terms in the numerator and divide each by [tex]\( -x^2 \)[/tex]:
[tex]\[ = \frac{x^4}{-x^2} - \frac{x^3}{-x^2} + \frac{x^2}{-x^2} \][/tex]

Simplify each term:
[tex]\[ = -x^2 + x - 1 \][/tex]

So, we find:
[tex]\[ \left( \frac{f}{g} \right)(x) = -x^2 + x - 1 \][/tex]

Thus, the correct choice is:
[tex]\[ \boxed{-x^2 + x - 1} \][/tex]