Answer :
Let's complete the table step-by-step based on the given information.
### Step 1: Fractional Notation: [tex]\(\frac{3}{8}\)[/tex]
- Decimal Notation: To convert the fraction [tex]\(\frac{3}{8}\)[/tex] to a decimal, divide the numerator by the denominator:
[tex]\[ \frac{3}{8} = 0.375 \][/tex]
- Percent Notation: To convert the decimal to a percentage, multiply by 100:
[tex]\[ 0.375 \times 100 = 37.5\% \][/tex]
So, the entries for the first row are:
[tex]\[ \frac{3}{8} \quad \text {Decimal:} \quad 0.375 \quad \text{Percent:} \quad 37.5\% \][/tex]
### Step 2: Decimal Notation: [tex]\(0.2\)[/tex]
- Fractional Notation: Convert the decimal [tex]\(0.2\)[/tex] to a fraction. [tex]\(0.2\)[/tex] is equal to [tex]\(\frac{1}{5}\)[/tex].
- Percent Notation: To convert the decimal to a percentage, multiply by 100:
[tex]\[ 0.2 \times 100 = 20\% \][/tex]
So, the entries for the second row are:
[tex]\[ \text {Fraction:} \quad \frac{1}{5} \quad \text{Decimal:} \quad 0.2 \quad \text{Percent:} \quad 20\% \][/tex]
### Step 3: Percent Notation: [tex]\(275\%\)[/tex]
- Decimal Notation: To convert the percentage to decimal, divide by 100:
[tex]\[ 275\% = 275 / 100 = 2.75 \][/tex]
- Fractional Notation: Thus, [tex]\(275\%\)[/tex] as a fraction is [tex]\(\frac{275}{100}\)[/tex]. To simplify if needed:
[tex]\[ \frac{275}{100} = \frac{11}{4} \][/tex]
So, the entries for the third row are:
[tex]\[ \text{Fraction:} \quad \frac{275}{100} \quad \text{Decimal:} \quad 2.75 \quad \text{Percent:} \quad 275\% \][/tex]
### Completed Table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \begin{tabular}{c} Fractional \\ Notation \end{tabular} & \begin{tabular}{c} Decimal \\ Notation \end{tabular} & \begin{tabular}{c} Percent \\ Notation \end{tabular} \\ \hline $\frac{3}{8}$ & 0.375 & 37.5\% \\ \hline $\frac{1}{5}$ & 0.2 & 20\% \\ \hline $\frac{275}{100}$ & 2.75 & 275\% \\ \hline \end{tabular} \][/tex]
### Step 1: Fractional Notation: [tex]\(\frac{3}{8}\)[/tex]
- Decimal Notation: To convert the fraction [tex]\(\frac{3}{8}\)[/tex] to a decimal, divide the numerator by the denominator:
[tex]\[ \frac{3}{8} = 0.375 \][/tex]
- Percent Notation: To convert the decimal to a percentage, multiply by 100:
[tex]\[ 0.375 \times 100 = 37.5\% \][/tex]
So, the entries for the first row are:
[tex]\[ \frac{3}{8} \quad \text {Decimal:} \quad 0.375 \quad \text{Percent:} \quad 37.5\% \][/tex]
### Step 2: Decimal Notation: [tex]\(0.2\)[/tex]
- Fractional Notation: Convert the decimal [tex]\(0.2\)[/tex] to a fraction. [tex]\(0.2\)[/tex] is equal to [tex]\(\frac{1}{5}\)[/tex].
- Percent Notation: To convert the decimal to a percentage, multiply by 100:
[tex]\[ 0.2 \times 100 = 20\% \][/tex]
So, the entries for the second row are:
[tex]\[ \text {Fraction:} \quad \frac{1}{5} \quad \text{Decimal:} \quad 0.2 \quad \text{Percent:} \quad 20\% \][/tex]
### Step 3: Percent Notation: [tex]\(275\%\)[/tex]
- Decimal Notation: To convert the percentage to decimal, divide by 100:
[tex]\[ 275\% = 275 / 100 = 2.75 \][/tex]
- Fractional Notation: Thus, [tex]\(275\%\)[/tex] as a fraction is [tex]\(\frac{275}{100}\)[/tex]. To simplify if needed:
[tex]\[ \frac{275}{100} = \frac{11}{4} \][/tex]
So, the entries for the third row are:
[tex]\[ \text{Fraction:} \quad \frac{275}{100} \quad \text{Decimal:} \quad 2.75 \quad \text{Percent:} \quad 275\% \][/tex]
### Completed Table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \begin{tabular}{c} Fractional \\ Notation \end{tabular} & \begin{tabular}{c} Decimal \\ Notation \end{tabular} & \begin{tabular}{c} Percent \\ Notation \end{tabular} \\ \hline $\frac{3}{8}$ & 0.375 & 37.5\% \\ \hline $\frac{1}{5}$ & 0.2 & 20\% \\ \hline $\frac{275}{100}$ & 2.75 & 275\% \\ \hline \end{tabular} \][/tex]