What is the solution to the compound inequality [tex]3x - 8 \geq -5[/tex] and [tex]2x - 7 \ \textless \ 5[/tex]?

A. [tex]x \leq 1[/tex] and [tex]x \ \textgreater \ 6[/tex]
B. [tex]1 \leq x \ \textless \ 6[/tex]
C. [tex]x \ \textgreater \ 1[/tex] and [tex]x \ \textgreater \ 6[/tex]
D. [tex]1 \ \textless \ x \ \textless \ 6[/tex]



Answer :

To solve the compound inequality [tex]\(3x - 8 \geq -5\)[/tex] and [tex]\(2x - 7 < 5\)[/tex], we need to solve each inequality separately and then combine their solutions.

### Step 1: Solve [tex]\(3x - 8 \geq -5\)[/tex]

1. Add 8 to both sides of the inequality:
[tex]\[ 3x - 8 + 8 \geq -5 + 8 \][/tex]
Simplifying, we get:
[tex]\[ 3x \geq 3 \][/tex]

2. Divide both sides by 3:
[tex]\[ \frac{3x}{3} \geq \frac{3}{3} \][/tex]
Simplifying, we get:
[tex]\[ x \geq 1 \][/tex]

### Step 2: Solve [tex]\(2x - 7 < 5\)[/tex]

1. Add 7 to both sides of the inequality:
[tex]\[ 2x - 7 + 7 < 5 + 7 \][/tex]
Simplifying, we get:
[tex]\[ 2x < 12 \][/tex]

2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{12}{2} \][/tex]
Simplifying, we get:
[tex]\[ x < 6 \][/tex]

### Step 3: Combine the Solutions

We need the values of [tex]\(x\)[/tex] that satisfy both inequalities:
- From the first inequality, [tex]\(3x - 8 \geq -5\)[/tex], we have [tex]\(x \geq 1\)[/tex].
- From the second inequality, [tex]\(2x - 7 < 5\)[/tex], we have [tex]\(x < 6\)[/tex].

The intersection of [tex]\(x \geq 1\)[/tex] and [tex]\(x < 6\)[/tex] is:
[tex]\[ 1 \leq x < 6 \][/tex]

Therefore, the final solution to the compound inequality is:
[tex]\[ 1 \leq x < 6 \][/tex]

So, the correct answer is:

[tex]\( \boxed{1 \leq x < 6} \)[/tex]