Which polynomial expression represents a sum of cubes?

A. [tex]\((6-s)\left(s^2+6s+36\right)\)[/tex]

B. [tex]\((6+s)\left(s^2-6s-36\right)\)[/tex]

C. [tex]\((6+s)\left(s^2-6s+36\right)\)[/tex]

D. [tex]\((6+s)\left(s^2+6s+36\right)\)[/tex]



Answer :

To determine which polynomial expression represents a sum of cubes, we can use the standard sum of cubes formula:

[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]

We need to match this form with one of the given polynomial expressions. Let us examine them one by one:

1. [tex]\((6-s)\left(s^2 + 6s + 36\right)\)[/tex]

2. [tex]\((6+s)\left(s^2 - 6s - 36\right)\)[/tex]

3. [tex]\((6+s)\left(s^2 - 6s + 36\right)\)[/tex]

4. [tex]\((6+s)\left(s^2 + 6s + 36\right)\)[/tex]

We need to find expressions in the form of [tex]\( (a + b)(a^2 - ab + b^2) \)[/tex] where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] can be identified easily.

Let's analyze each option to see if they fit this format:

1. [tex]\((6-s)(s^2 + 6s + 36)\)[/tex]

- Here, the term [tex]\( (6-s) \)[/tex] does not match [tex]\( (a + b) \)[/tex] since it has a minus sign instead of a plus sign.

2. [tex]\((6+s)(s^2 - 6s - 36)\)[/tex]

- Here, even though the linear term [tex]\( (6+s) \)[/tex] might match [tex]\( (a + b) \)[/tex], the quadratic term [tex]\( s^2 - 6s - 36 \)[/tex] does not match [tex]\( a^2 - ab + b^2 \)[/tex]. The [tex]\(-36\)[/tex] should be positive.

3. [tex]\((6+s)(s^2 - 6s + 36)\)[/tex]

- This resembles [tex]\( (a + b) \)[/tex] as [tex]\( (a + b) \)[/tex], and [tex]\( s^2 - 6s + 36 \)[/tex] conforms to [tex]\( a^2 - ab + b^2 \)[/tex], so it is a valid candidate.

4. [tex]\((6+s)(s^2 + 6s + 36)\)[/tex]

- This option has the right structure for [tex]\( (a + b) \)[/tex] as [tex]\( (a + b) \)[/tex], but the term [tex]\( s^2 + 6s + 36 \)[/tex] does not match [tex]\( a^2 - ab + b^2 \)[/tex] since the sign in the middle term [tex]\(6s\)[/tex] should be negative.

By eliminating other options based on the mismatches, we conclude that the polynomial expression that represents a sum of cubes is:

[tex]\[ (6+s)(s^2-6s+36) \][/tex]

So, the correct answer is:

[tex]\[ (6+s)\left(s^2 - 6s + 36\right) \][/tex]

The fourth polynomial expression represents the sum of cubes.