Let [tex]$a(x) = -14x^7 + 8x^5 - 6x^4 + 5x$[/tex] and [tex]$b(x) = x^3$[/tex].

When dividing [tex][tex]$a(x)$[/tex][/tex] by [tex]$b(x)$[/tex], we can find the unique quotient polynomial [tex]q(x)[/tex] and remainder polynomial [tex]r(x)[/tex] that satisfy the following equation:

[tex]\[
\frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)},
\][/tex]

where the degree of [tex]$r(x)$[/tex] is less than the degree of [tex]$b(x)$[/tex].

What is the quotient, [tex]q(x)$[/tex]?

\[
q(x) = \ \square
\]

What is the remainder, [tex]r(x)$[/tex]?

[tex]\[
r(x) = \ \square
\][/tex]



Answer :

To divide the polynomial [tex]\( a(x) = -14x^7 + 8x^5 - 6x^4 + 5x \)[/tex] by the polynomial [tex]\( b(x) = x^3 \)[/tex], we need to determine the quotient polynomial [tex]\( q(x) \)[/tex] and the remainder polynomial [tex]\( r(x) \)[/tex] such that:

[tex]\[ \frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)} \][/tex]

where the degree of [tex]\( r(x) \)[/tex] is less than the degree of [tex]\( b(x) \)[/tex].

Here, the degree of [tex]\( b(x) = x^3 \)[/tex] is 3. Therefore, the degree of the remainder [tex]\( r(x) \)[/tex] must be less than 3.

After performing the polynomial division, we find:

[tex]\[ a(x) = b(x) \cdot q(x) + r(x) \][/tex]

The quotient [tex]\( q(x) \)[/tex] and the remainder [tex]\( r(x) \)[/tex] are:

[tex]\[ q(x) = 2x(-7x^3 + 4x - 3) \][/tex]

and

[tex]\[ r(x) = 5x \][/tex]

So, the quotient polynomial [tex]\( q(x) \)[/tex] is:

[tex]\[ q(x) = 2x(-7x^3 + 4x - 3) \][/tex]

And the remainder polynomial [tex]\( r(x) \)[/tex] is:

[tex]\[ r(x) = 5x \][/tex]

Therefore, the quotient [tex]\( q(x) \)[/tex] is [tex]\( 2x(-7x^3 + 4x - 3) \)[/tex], and the remainder [tex]\( r(x) \)[/tex] is [tex]\( 5x \)[/tex].