Answer :

To solve the expression [tex]\( a^3 - b^2 \)[/tex] for [tex]\( a = -7 \)[/tex] and [tex]\( b = -3 \)[/tex], we'll follow these steps:

1. Calculate [tex]\( a^3 \)[/tex]:
[tex]\[ a^3 = (-7)^3 \][/tex]
Raising [tex]\(-7\)[/tex] to the third power:
[tex]\[ (-7) \times (-7) \times (-7) = -343 \][/tex]
So, [tex]\( a^3 = -343 \)[/tex].

2. Calculate [tex]\( b^2 \)[/tex]:
[tex]\[ b^2 = (-3)^2 \][/tex]
Squaring [tex]\(-3\)[/tex]:
[tex]\[ (-3) \times (-3) = 9 \][/tex]
So, [tex]\( b^2 = 9 \)[/tex].

3. Substitute these values into the expression [tex]\( a^3 - b^2 \)[/tex]:
[tex]\[ a^3 - b^2 = -343 - 9 \][/tex]

4. Perform the subtraction:
[tex]\[ -343 - 9 = -352 \][/tex]

Therefore, the value of the expression [tex]\( a^3 - b^2 \)[/tex] when [tex]\( a = -7 \)[/tex] and [tex]\( b = -3 \)[/tex] is [tex]\(-352\)[/tex]. The correct answer is:

D. [tex]\(-352\)[/tex]