Answer as a fraction. Do not include spaces in your answer.

[tex]\[ 4 \frac{2}{3} + \frac{7}{9} = \][/tex]

[tex]\[ \boxed{\square} \][/tex]



Answer :

To solve the problem of adding [tex]\(4 \frac{2}{3} + \frac{7}{9}\)[/tex], we'll follow these steps:

1. Convert the mixed number to an improper fraction:

For [tex]\(4 \frac{2}{3}\)[/tex]:
- Multiply the whole number [tex]\(4\)[/tex] by the denominator [tex]\(3\)[/tex]: [tex]\(4 \times 3 = 12\)[/tex]
- Add the numerator [tex]\(2\)[/tex] to the result: [tex]\(12 + 2 = 14\)[/tex]
- The improper fraction is [tex]\(\frac{14}{3}\)[/tex].

2. Align the fractions to a common denominator:

Fractions [tex]\(\frac{14}{3}\)[/tex] and [tex]\(\frac{7}{9}\)[/tex]:

- The denominator of [tex]\(\frac{14}{3}\)[/tex] is [tex]\(3\)[/tex] and the denominator of [tex]\(\frac{7}{9}\)[/tex] is [tex]\(9\)[/tex].
- The least common multiple of [tex]\(3\)[/tex] and [tex]\(9\)[/tex] is [tex]\(9\)[/tex].

So, we will convert [tex]\(\frac{14}{3}\)[/tex] to have a denominator of [tex]\(9\)[/tex]:
- Multiply both numerator and denominator of [tex]\(\frac{14}{3}\)[/tex] by [tex]\(3\)[/tex] to make the denominator [tex]\(9\)[/tex]: [tex]\(\frac{14 \times 3}{3 \times 3} = \frac{42}{9}\)[/tex].

3. Add the fractions:

[tex]\(\frac{42}{9}\)[/tex] and [tex]\(\frac{7}{9}\)[/tex]:

- Since the denominators are the same, simply add the numerators: [tex]\(42 + 7 = 49\)[/tex].
- The resulting fraction is [tex]\(\frac{49}{9}\)[/tex].

4. Simplify if necessary:

The fraction [tex]\(\frac{49}{9}\)[/tex] is already in its simplest form.

So, the answer is:

[tex]\[ \boxed{\frac{49}{9}} \][/tex]