\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
[tex]$g(x)$[/tex] & -26 & -7 & 0 & 1 & 2 & 9 & 28 \\
\hline
\end{tabular}

Which statement is true?

A. The [tex]$x$[/tex]-intercept of [tex]$f(x)$[/tex] is equal to the [tex]$x$[/tex]-intercept of [tex]$g(x)$[/tex].



Answer :

To determine if the statement is true, we need to identify the [tex]\(x\)[/tex]-intercept of the function [tex]\(g(x)\)[/tex]. The [tex]\(x\)[/tex]-intercept is the value of [tex]\(x\)[/tex] at which [tex]\(g(x)\)[/tex] equals 0.

Given the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline g(x) & -26 & -7 & 0 & 1 & 2 & 9 & 28 \\ \hline \end{array} \][/tex]

We look for the value of [tex]\(x\)[/tex] where [tex]\(g(x) = 0\)[/tex].

1. For [tex]\(x = -3\)[/tex], [tex]\(g(-3) = -26\)[/tex] (not zero).
2. For [tex]\(x = -2\)[/tex], [tex]\(g(-2) = -7\)[/tex] (not zero).
3. For [tex]\(x = -1\)[/tex], [tex]\(g(-1) = 0\)[/tex].

Here, [tex]\(g(x)\)[/tex] equals 0 when [tex]\(x = -1\)[/tex]. Therefore, the [tex]\(x\)[/tex]-intercept of [tex]\(g(x)\)[/tex] is [tex]\(x = -1\)[/tex].

The statement "The [tex]\(x\)[/tex]-intercept of [tex]\(f(x)\)[/tex] is equal to the [tex]\(x\)[/tex]-intercept of [tex]\(g(x)\)[/tex]" implies that there is an [tex]\(f(x)\)[/tex] with an [tex]\(x\)[/tex]-intercept equal to -1. Without information on [tex]\(f(x)\)[/tex], we cannot verify this part; however, the [tex]\(x\)[/tex]-intercept of [tex]\(g(x)\)[/tex] is accurately determined as [tex]\(x = -1\)[/tex].

Thus, the [tex]\(x\)[/tex]-intercept of [tex]\(g(x)\)[/tex] is [tex]\(-1\)[/tex].