Solve for [tex]\(a\)[/tex].

Set up the equation using the Pythagorean Theorem.

[tex]\[
\begin{array}{l}
a^2 + b^2 = c^2 \\
a^2 + 9^2 = 12^2
\end{array}
\][/tex]

Now, begin to solve the equation.

[tex]\[a^2 + 81 = 144\][/tex]

Hint: Calculate [tex]\(9^2\)[/tex], which is [tex]\((9 \cdot 9)\)[/tex].



Answer :

To solve for [tex]\( a \)[/tex] using the Pythagorean Theorem, follow these steps:

1. Start with the equation provided by the Pythagorean Theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]

2. Substitute the given values [tex]\( b = 9 \)[/tex] and [tex]\( c = 12 \)[/tex] into the equation:
[tex]\[ a^2 + 9^2 = 12^2 \][/tex]

3. Calculate [tex]\( 9^2 \)[/tex]:
[tex]\[ 9^2 = 81 \][/tex]

4. Substitute [tex]\( 81 \)[/tex] back into the equation:
[tex]\[ a^2 + 81 = 144 \][/tex]

5. Subtract [tex]\( 81 \)[/tex] from both sides of the equation to isolate [tex]\( a^2 \)[/tex]:
[tex]\[ a^2 = 144 - 81 \][/tex]

6. Perform the subtraction:
[tex]\[ a^2 = 63 \][/tex]

7. To find [tex]\( a \)[/tex], take the square root of both sides of the equation:
[tex]\[ a = \sqrt{63} \][/tex]

8. Calculate the value of [tex]\( \sqrt{63} \)[/tex]:
[tex]\[ a = 7.937253933193772 \][/tex]

So, the value of [tex]\( a \)[/tex] is approximately [tex]\( 7.937 \)[/tex].