Match each expression with its equivalent simplified form.

a. [tex]x^0[/tex]
b. [tex](12 x^3)^2[/tex]
c. [tex]2 x^{-2}[/tex]
d. [tex]12 x^2 \cdot (-5 x^3)[/tex]
e. [tex]\frac{8 x^{10}}{2 x^2}[/tex]

1. [tex]4 x^8[/tex]
2. [tex]\frac{2}{x^2}[/tex]
3. 1
4. [tex]-60 x^5[/tex]
5. [tex]144 x^6[/tex]

---

Quiz 5.1.1 - Properties of Exponents



Answer :

Let's solve each part of the question step-by-step and match it to the given multiple choice answers.

Part (a): [tex]\( x^0 \)[/tex]

Any number, including [tex]\( x \)[/tex], raised to the power of 0 is equal to 1 (except when the base is 0). Thus,
[tex]\[ x^0 = 1 \][/tex]

Answer: 1

Part (b): [tex]\(\left(12 x^3\right)^2 \)[/tex]

To simplify this, use the power of a power property: [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. This property states that you multiply the exponents.

[tex]\[ \left(12 x^3\right)^2 = 12^2 \cdot (x^3)^2 \][/tex]
[tex]\[ = 144 \cdot x^{3 \cdot 2} \][/tex]
[tex]\[ = 144 x^6 \][/tex]

Answer: 144 [tex]\(x^6\)[/tex]

Part (c): [tex]\(2 x^{-2} \)[/tex]

A negative exponent means we take the reciprocal of the base raised to the positive exponent. Hence, [tex]\( x^{-2} = \frac{1}{x^2} \)[/tex]:
[tex]\[ 2 x^{-2} = 2 \cdot \frac{1}{x^2} \][/tex]
[tex]\[ = \frac{2}{x^2} \][/tex]

Answer: [tex]\(\frac{2}{x^2} \)[/tex]

Part (d): [tex]\(12 x^2 \cdot\left(-5 x^3\right) \)[/tex]

Use the product of powers property: [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex]. Multiply the coefficients and add the exponents of [tex]\( x \)[/tex]:

[tex]\[ 12 x^2 \cdot (-5 x^3) = (12 \cdot -5) \cdot x^{2+3} \][/tex]
[tex]\[ = -60 \cdot x^5 \][/tex]

Answer: -60 [tex]\(x^5\)[/tex]

Part (e): [tex]\(\frac{8 x^{10}}{2 x^2} \)[/tex]

Use the quotient of powers property: [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]. Divide the coefficients and subtract the exponents of [tex]\( x \)[/tex]:

[tex]\[ \frac{8 x^{10}}{2 x^2} = \left(\frac{8}{2}\right) \cdot x^{10-2} \][/tex]
[tex]\[ = 4 \cdot x^8 \][/tex]

Answer: 4 [tex]\(x^8\)[/tex]

Matching Multiple Choice Answers

1. [tex]\( 4 x^8 \)[/tex] : Part (e)
2. [tex]\(\frac{2}{x^2} \)[/tex] : Part (c)
3. 1 : Part (a)
4. [tex]\(-60 x^5 \)[/tex] : Part (d)
5. [tex]\( 144 x^6 \)[/tex] : Part (b)

So, the correct answers are:

- Part (a): 1
- Part (b): [tex]\( 144 x^6 \)[/tex]
- Part (c): [tex]\(\frac{2}{x^2} \)[/tex]
- Part (d): [tex]\(-60 x^5 \)[/tex]
- Part (e): [tex]\( 4 x^8 \)[/tex]

These match options 3, 5, 2, 4, and 1, respectively.