Answer :
Sure! Let's solve this step-by-step:
1. Identify the given data:
- Mass of [tex]\( KCl \)[/tex] [tex]\( (m) \)[/tex]: 41.7 grams
- Molar mass of [tex]\( KCl \)[/tex] [tex]\( (M) \)[/tex]: 74.55 grams per mole
- Volume of the solution [tex]\( (V) \)[/tex]: 500.0 milliliters
2. Convert the volume from milliliters to liters:
[tex]\[ V = \frac{500.0 \text{ mL}}{1000} = 0.5 \text{ L} \][/tex]
3. Calculate the number of moles of [tex]\( KCl \)[/tex]:
We use the formula for moles:
[tex]\[ \text{moles of } KCl = \frac{\text{mass of } KCl}{\text{molar mass of } KCl} \][/tex]
Substituting the values:
[tex]\[ \text{moles of } KCl = \frac{41.7 \text{ g}}{74.55 \text{ g/mol}} \approx 0.559356 \text{ moles} \][/tex]
4. Calculate the concentration of the solution:
The concentration [tex]\( C \)[/tex] in molarity is given by:
[tex]\[ C = \frac{\text{moles of solute}}{\text{volume of solution in liters}} \][/tex]
Substituting the values:
[tex]\[ C = \frac{0.559356 \text{ moles}}{0.5 \text{ L}} \approx 1.118712 \text{ mol/L} \][/tex]
Therefore, the concentration of [tex]\( KCl \)[/tex] in the resulting solution is approximately [tex]\( 1.1187 \text{ mol/L} \)[/tex].
1. Identify the given data:
- Mass of [tex]\( KCl \)[/tex] [tex]\( (m) \)[/tex]: 41.7 grams
- Molar mass of [tex]\( KCl \)[/tex] [tex]\( (M) \)[/tex]: 74.55 grams per mole
- Volume of the solution [tex]\( (V) \)[/tex]: 500.0 milliliters
2. Convert the volume from milliliters to liters:
[tex]\[ V = \frac{500.0 \text{ mL}}{1000} = 0.5 \text{ L} \][/tex]
3. Calculate the number of moles of [tex]\( KCl \)[/tex]:
We use the formula for moles:
[tex]\[ \text{moles of } KCl = \frac{\text{mass of } KCl}{\text{molar mass of } KCl} \][/tex]
Substituting the values:
[tex]\[ \text{moles of } KCl = \frac{41.7 \text{ g}}{74.55 \text{ g/mol}} \approx 0.559356 \text{ moles} \][/tex]
4. Calculate the concentration of the solution:
The concentration [tex]\( C \)[/tex] in molarity is given by:
[tex]\[ C = \frac{\text{moles of solute}}{\text{volume of solution in liters}} \][/tex]
Substituting the values:
[tex]\[ C = \frac{0.559356 \text{ moles}}{0.5 \text{ L}} \approx 1.118712 \text{ mol/L} \][/tex]
Therefore, the concentration of [tex]\( KCl \)[/tex] in the resulting solution is approximately [tex]\( 1.1187 \text{ mol/L} \)[/tex].