Let [tex]a(x) = 5x^3 + 2x^2 + x + 2[/tex] and [tex]b(x) = x^3 + x + 1[/tex].

When dividing [tex]a(x)[/tex] by [tex]b(x)[/tex], we can find the unique quotient polynomial [tex]q(x)[/tex] and remainder polynomial [tex]r(x)[/tex] that satisfy the following equation:
[tex]\[
\frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)},
\][/tex]
where the degree of [tex]r(x)[/tex] is less than the degree of [tex]b(x)[/tex].

What is the quotient [tex]q(x)[/tex]?
[tex]\[
q(x) = \boxed{}
\][/tex]

What is the remainder [tex]r(x)[/tex]?
[tex]\[
r(x) = \boxed{}
\][/tex]



Answer :

Let's divide the polynomials [tex]\(a(x) = 5x^3 + 2x^2 + x + 2\)[/tex] by [tex]\(b(x) = x^3 + x + 1\)[/tex] to find the quotient polynomial [tex]\(q(x)\)[/tex] and the remainder polynomial [tex]\(r(x)\)[/tex].

The general form for polynomial division is:

[tex]\[ \frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)} \][/tex]

where the degree of the remainder polynomial [tex]\(r(x)\)[/tex] is less than the degree of the divisor [tex]\(b(x)\)[/tex].

1. We start with the highest degree terms of both polynomials. The highest degree term of [tex]\(a(x)\)[/tex] is [tex]\(5x^3\)[/tex], and the highest degree term of [tex]\(b(x)\)[/tex] is [tex]\(x^3\)[/tex].

2. Divide the leading term of [tex]\(a(x)\)[/tex] by the leading term of [tex]\(b(x)\)[/tex]:

[tex]\[ \frac{5x^3}{x^3} = 5 \][/tex]

So, the first term of the quotient [tex]\(q(x)\)[/tex] is [tex]\(5\)[/tex].

3. Now, multiply [tex]\(5\)[/tex] by [tex]\(b(x)\)[/tex]:

[tex]\[ 5 \times (x^3 + x + 1) = 5x^3 + 5x + 5 \][/tex]

4. Subtract this result from [tex]\(a(x)\)[/tex]:

[tex]\[ (5x^3 + 2x^2 + x + 2) - (5x^3 + 5x + 5) = 2x^2 + x - 5x + 2 - 5 = 2x^2 - 4x - 3 \][/tex]

The resulting polynomial [tex]\(2x^2 - 4x - 3\)[/tex] has a degree less than [tex]\(b(x)\)[/tex], so it will be the remainder [tex]\(r(x)\)[/tex].

Therefore, the quotient polynomial [tex]\(q(x)\)[/tex] is:

[tex]\[ q(x) = 5 \][/tex]

And the remainder polynomial [tex]\(r(x)\)[/tex] is:

[tex]\[ r(x) = 2x^2 - 4x - 3 \][/tex]

So the final results are:

[tex]\[ q(x) = 5 \][/tex]
[tex]\[ r(x) = 2x^2 - 4x - 3 \][/tex]