Let [tex]$a(x) = -12x^5 - 2x^3 - 9x$[/tex] and [tex]$b(x) = 3x^4 + x^2 + 1$[/tex].

When dividing [tex]a(x)[/tex] by [tex]b(x)[/tex], we can find the unique quotient polynomial [tex]q(x)[/tex] and remainder polynomial [tex]r(x)[/tex] that satisfy the following equation:

[tex]\[
\frac{a(x)}{b(x)} = q(x) + \frac{r(x)}{b(x)}
\][/tex]

where the degree of [tex]r(x)[/tex] is less than the degree of [tex]b(x)[/tex].

What is the quotient, [tex]q(x)[/tex]?

[tex]\[
q(x) = \boxed{}
\][/tex]

What is the remainder, [tex]r(x)[/tex]?

[tex]\[
r(x) = \boxed{}
\][/tex]



Answer :

Given the polynomials [tex]\(a(x) = -12x^5 - 2x^3 - 9x\)[/tex] and [tex]\(b(x) = 3x^4 + x^2 + 1\)[/tex], we want to perform polynomial division to find the quotient [tex]\(q(x)\)[/tex] and the remainder [tex]\(r(x)\)[/tex].

To divide [tex]\(a(x)\)[/tex] by [tex]\(b(x)\)[/tex]:

1. Setup the division: Divide the leading term of [tex]\(a(x)\)[/tex] by the leading term of [tex]\(b(x)\)[/tex]:
[tex]\[ \frac{-12x^5}{3x^4} = -4x \][/tex]

2. Form the first term of quotient: The term [tex]\(-4x\)[/tex] becomes the first term of the quotient [tex]\(q(x)\)[/tex].

3. Multiply and subtract: Multiply [tex]\(b(x)\)[/tex] by the first term of the quotient:
[tex]\[ -4x \cdot (3x^4 + x^2 + 1) = -12x^5 - 4x^3 - 4x \][/tex]
Subtract this from [tex]\(a(x)\)[/tex]:
[tex]\[ (-12x^5 - 2x^3 - 9x) - (-12x^5 - 4x^3 - 4x) = 2x^3 - 5x \][/tex]

4. Form the remainder: The new polynomial after subtraction, [tex]\(2x^3 - 5x\)[/tex], is of degree less than [tex]\(b(x)\)[/tex], so it is the remainder [tex]\(r(x)\)[/tex].

Hence, we have the quotient and remainder as:

[tex]\[ q(x) = -4x \][/tex]

[tex]\[ r(x) = 2x^3 - 5x \][/tex]

So, the quotient [tex]\(q(x)\)[/tex] is [tex]\(-4x\)[/tex] and the remainder [tex]\(r(x)\)[/tex] is [tex]\(2x^3 - 5x\)[/tex].