Answer :
Sure, let's go through the process of approximating each given fraction as a decimal to one, two, and three places.
### Fraction: [tex]\(\frac{1}{3}\)[/tex]
- Decimal to One Place: 0.3
- Decimal to Two Places: 0.33
- Decimal to Three Places: 0.333
These values are provided as an example.
### Fraction: [tex]\(\frac{4}{9}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.4 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.44 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.444 (rounded to three decimal places)
### Fraction: [tex]\(\frac{4}{13}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.3 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.31 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.308 (rounded to three decimal places)
### Fraction: [tex]\(\frac{7}{24}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.3 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.29 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.292 (rounded to three decimal places)
Now, let's fill in these values in the provided table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Fraction} & \text{Decimal to One Place} & \text{Decimal to Two Places} & \text{Decimal to Three Places} \\ \hline \frac{1}{3} & 0.3 & 0.33 & 0.333 \\ \hline \frac{4}{9} & 0.4 & 0.44 & 0.444 \\ \hline \frac{4}{13} & 0.3 & 0.31 & 0.308 \\ \hline \frac{7}{24} & 0.3 & 0.29 & 0.292 \\ \hline \end{array} \][/tex]
By following these steps, you can determine the approximated decimal values for each fraction at different levels of precision.
### Fraction: [tex]\(\frac{1}{3}\)[/tex]
- Decimal to One Place: 0.3
- Decimal to Two Places: 0.33
- Decimal to Three Places: 0.333
These values are provided as an example.
### Fraction: [tex]\(\frac{4}{9}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.4 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.44 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{4}{9}\)[/tex] ≈ 0.444 (rounded to three decimal places)
### Fraction: [tex]\(\frac{4}{13}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.3 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.31 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{4}{13}\)[/tex] ≈ 0.308 (rounded to three decimal places)
### Fraction: [tex]\(\frac{7}{24}\)[/tex]
1. Decimal to One Place:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.3 (rounded to one decimal place)
2. Decimal to Two Places:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.29 (rounded to two decimal places)
3. Decimal to Three Places:
- [tex]\(\frac{7}{24}\)[/tex] ≈ 0.292 (rounded to three decimal places)
Now, let's fill in these values in the provided table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Fraction} & \text{Decimal to One Place} & \text{Decimal to Two Places} & \text{Decimal to Three Places} \\ \hline \frac{1}{3} & 0.3 & 0.33 & 0.333 \\ \hline \frac{4}{9} & 0.4 & 0.44 & 0.444 \\ \hline \frac{4}{13} & 0.3 & 0.31 & 0.308 \\ \hline \frac{7}{24} & 0.3 & 0.29 & 0.292 \\ \hline \end{array} \][/tex]
By following these steps, you can determine the approximated decimal values for each fraction at different levels of precision.