The number of customers for a new online business can be modeled by [tex]$y=10 x^2+50 x+300$[/tex], where [tex]$x$[/tex] represents the number of months since the business started. Which is the best prediction for the number of customers in month 20?

A. 7260
B. 9540
C. 10,800
D. 5300



Answer :

Certainly! To determine the number of customers in month 20 using the given model [tex]\( y = 10x^2 + 50x + 300 \)[/tex], follow these steps:

1. Identify the value of [tex]\( x \)[/tex] for which we need to find the number of customers. In this case, [tex]\( x = 20 \)[/tex] (since we are interested in month 20).
2. Substitute [tex]\( x = 20 \)[/tex] into the equation [tex]\( y = 10x^2 + 50x + 300 \)[/tex].
3. Calculate the value of [tex]\( y \)[/tex] by evaluating the expression step-by-step.

Let's break it down:

- Start with the given equation:
[tex]\[ y = 10x^2 + 50x + 300 \][/tex]

- Substitute [tex]\( x = 20 \)[/tex] into the equation:
[tex]\[ y = 10(20)^2 + 50(20) + 300 \][/tex]

- Calculate [tex]\( (20)^2 \)[/tex]:
[tex]\[ (20)^2 = 400 \][/tex]

- Multiply this result by 10:
[tex]\[ 10 \cdot 400 = 4000 \][/tex]

- Next, multiply [tex]\( 50 \)[/tex] by [tex]\( 20 \)[/tex]:
[tex]\[ 50 \cdot 20 = 1000 \][/tex]

- Now add all the obtained values together:
[tex]\[ y = 4000 + 1000 + 300 \][/tex]

- Finally, sum all the terms:
[tex]\[ y = 5300 \][/tex]

Therefore, the best prediction for the number of customers in month 20 is:

D. 5300