Simplify [tex]\sqrt{-48}[/tex].

A. [tex]4 i \sqrt{3}[/tex]
B. [tex]4 \sqrt{3 i}[/tex]
C. [tex]-4 \sqrt{3}[/tex]
D. [tex]4 \sqrt{-3}[/tex]



Answer :

To simplify the expression [tex]\(\sqrt{-48}\)[/tex]:

1. Recognize that the square root of a negative number can be expressed using the imaginary unit [tex]\( i \)[/tex], where [tex]\( i = \sqrt{-1} \)[/tex].
2. Therefore, [tex]\(\sqrt{-48}\)[/tex] can be broken down as [tex]\(\sqrt{-1 \times 48}\)[/tex].

[tex]\[ \sqrt{-48} = \sqrt{-1 \times 48} \][/tex]

3. We can separate this into two parts: the square root of [tex]\(-1\)[/tex] and the square root of [tex]\(48\)[/tex].

[tex]\[ \sqrt{-48} = \sqrt{-1} \times \sqrt{48} = i \times \sqrt{48} \][/tex]

4. Now, simplify [tex]\(\sqrt{48}\)[/tex]. Notice that [tex]\(48\)[/tex] can be factored into [tex]\(16 \times 3\)[/tex] (since [tex]\(16\)[/tex] is a perfect square).

[tex]\[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4 \sqrt{3} \][/tex]

5. Combining these results, we find:

[tex]\[ \sqrt{-48} = i \times 4 \sqrt{3} = 4i \sqrt{3} \][/tex]

Thus, after step-by-step simplification, we get:

[tex]\[ \sqrt{-48} = 4i \sqrt{3} \][/tex]

So, the correct answer is:

[tex]\[4i \sqrt{3}\][/tex]

Choose the correct option:

[tex]\[ \boxed{4i \sqrt{3}} \][/tex]