Type the correct answer in the box. Use numerals instead of words.

What value of [tex]$x$[/tex] makes this equation true?

[tex]
\begin{array}{c}
\frac{x}{6}-7=-4 \\
x=\square
\end{array}
[/tex]



Answer :

Let's solve the equation step by step:

Given equation:
[tex]\[ \frac{x}{6} - 7 = -4 \][/tex]

Step 1: Add 7 to both sides of the equation to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ \frac{x}{6} - 7 + 7 = -4 + 7 \][/tex]
[tex]\[ \frac{x}{6} = 3 \][/tex]

Step 2: Multiply both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ \left( \frac{x}{6} \right) \cdot 6 = 3 \cdot 6 \][/tex]
[tex]\[ x = 18 \][/tex]

So, the value of [tex]\(x\)[/tex] that makes this equation true is:
[tex]\[ x = 18 \][/tex]