Select the correct answer.

Which value for [tex]$x$[/tex] makes the sentence true?

[tex] \frac{3}{4} x + 4 = 7 [/tex]

A. 4
B. [tex] \frac{44}{3} [/tex]
C. -3
D. 8



Answer :

To determine the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\frac{3}{4} x + 4 = 7\)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ \frac{3}{4} x + 4 = 7 \][/tex]

2. Isolate the term with [tex]\( x \)[/tex]:
Subtract 4 from both sides of the equation to get:
[tex]\[ \frac{3}{4} x = 7 - 4 \][/tex]

3. Simplify the right-hand side:
[tex]\[ \frac{3}{4} x = 3 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
Multiply both sides of the equation by the reciprocal of [tex]\(\frac{3}{4}\)[/tex], which is [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[ x = 3 \cdot \frac{4}{3} \][/tex]

5. Simplify the multiplication:
[tex]\[ x = 4 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that makes the equation [tex]\(\frac{3}{4} x + 4 = 7\)[/tex] true is [tex]\( 4 \)[/tex].

So, the correct answer is:

[tex]\[ \boxed{4} \][/tex]