Complete the equation describing the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] as shown in the table.

[tex]\[
\begin{tabular}{c|c}
$x$ & $y$ \\
\hline
-2 & -8 \\
-1 & -5 \\
0 & -2 \\
1 & 1 \\
2 & 4 \\
3 & 7 \\
\end{tabular}
\][/tex]

[tex]\[ y = [?] x + \][/tex]

Enter the answer that belongs in the green box.



Answer :

To find the equation of the line that best fits the given data points [tex]\((-2, -8)\)[/tex], [tex]\((-1, -5)\)[/tex], [tex]\( (0, -2)\)[/tex], [tex]\( (1, 1)\)[/tex], [tex]\( (2, 4)\)[/tex], and [tex]\( (3, 7)\)[/tex], we need to perform a linear regression analysis. The equation of the line is generally given by:

[tex]\[ y = mx + c \][/tex]

where:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( c \)[/tex] is the y-intercept of the line.

Given the data points, we first need to determine the slope ([tex]\( m \)[/tex]) and the y-intercept ([tex]\( c \)[/tex]).

The slope [tex]\( m \)[/tex] is calculated using the formula:

[tex]\[ m = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sum{(x_i - \bar{x})^2}} \][/tex]

where [tex]\( \bar{x} \)[/tex] and [tex]\( \bar{y} \)[/tex] are the means of the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values, respectively.

The y-intercept [tex]\( c \)[/tex] is calculated using the formula:
[tex]\[ c = \bar{y} - m \cdot \bar{x} \][/tex]

From the analysis, we have found the following results:

1. The slope [tex]\( m \)[/tex] is calculated to be [tex]\( 3.0 \)[/tex].
2. The y-intercept [tex]\( c \)[/tex] is calculated to be [tex]\( -2.0 \)[/tex].

Therefore, the equation that best describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:

[tex]\[ y = 3.0x - 2.0 \][/tex]

So, the value that belongs in the green box is [tex]\( 3.0 \)[/tex]. The complete equation is:

[tex]\[ y = 3.0x - 2.0 \][/tex]