Drag each equation to the correct location on the table.

Solve the equations for the given variable. Then place the equations in the table under the correct solution.

[tex]\[
\begin{tabular}{|l|l|}
\hline
$x = 3$ & $x \neq 3$ \\
\hline
& \\
\hline
& \\
& \\
\hline
\end{tabular}
\][/tex]

Equations:

[tex]\[
\begin{array}{l}
-6 + x = -9 \\
x - 5 = -2 \\
\frac{z}{3} = 9 \\
-\frac{3}{5} + x = \frac{12}{5} \\
-14x = -2 \\
\frac{z}{4} = \frac{6}{8}
\end{array}
\][/tex]



Answer :

Alright, let's solve the given equations for the respective variables and classify them into the correct categories under [tex]\( x=3 \)[/tex] and [tex]\( x \neq 3 \)[/tex].

1. Solving [tex]\(-6 + x = -9\)[/tex]:
[tex]\[ -6 + x = -9 \implies x = -9 + 6 = -3 \][/tex]
[tex]\(\( x = -3\)[/tex])

2. Solving [tex]\(x - 5 = -2\)[/tex]:
[tex]\[ x - 5 = -2 \implies x = -2 + 5 = 3 \][/tex]
[tex]\(\( x = 3\)[/tex])

3. Solving [tex]\(\frac{z}{3} = 9\)[/tex]:
[tex]\[ \frac{z}{3} = 9 \implies z = 9 \times 3 = 27 \][/tex]
[tex]\(\( z = 27 \)[/tex])

4. Solving [tex]\(-\frac{3}{5} + x = \frac{12}{5}\)[/tex]:
[tex]\[ -\frac{3}{5} + x = \frac{12}{5} \implies x = \frac{12}{5} + \frac{3}{5} = \frac{15}{5} = 3 \][/tex]
[tex]\(\( x = 3\)[/tex])

5. Solving [tex]\(-14x = 0\)[/tex]:
[tex]\[ -14x = 0 \implies x = \frac{0}{-14} = 0 \][/tex]
[tex]\(\( x = 0\)[/tex])

6. Solving [tex]\(\frac{z}{4} = \frac{6}{8}\)[/tex]:
[tex]\[ \frac{z}{4} = \frac{6}{8} \implies z = (\frac{6}{8}) \times 4 = 3 \][/tex]
[tex]\(\( z = 3 \)[/tex])

Now, organizing the equations into the table:

[tex]\[ \begin{tabular}{|l|l|} \hline \textcolor{blue}{$x = 3$} & \textcolor{blue}{$x \neq 3$} \\ \hline $x - 5 = -2$ & \(-6 + x = -9\) \\ $-\frac{3}{5} + x = \frac{12}{5}$ & \(\frac{z}{3} = 9\) \\ & $-14x = 0$ \\ & $\frac{z}{4} = \frac{6}{8}$ \\ \hline \end{tabular} \][/tex]

Here is the correctly sorted table of equations.