Simplify [tex]-5-\sqrt{-44}[/tex].

A. [tex]-5-4 \sqrt{11 i}[/tex]
B. [tex]-5-2 i \sqrt{11}[/tex]
C. [tex]-5-4 i \sqrt{11}[/tex]
D. [tex]-5-2 \sqrt{11 i}[/tex]



Answer :

To simplify the expression [tex]\(-5 - \sqrt{-44}\)[/tex], follow these steps:

1. Understand the nature of the square root: The term [tex]\(\sqrt{-44}\)[/tex] involves the square root of a negative number, which results in an imaginary number. Recall that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.

2. Break down the expression under the square root: We have:
[tex]\[ \sqrt{-44} = \sqrt{-1 \cdot 44} \][/tex]

3. Use the property of square roots: The property [tex]\(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\)[/tex] allows us to rewrite the expression as:
[tex]\[ \sqrt{-44} = \sqrt{-1} \cdot \sqrt{44} \][/tex]

4. Substitute the imaginary unit [tex]\(i\)[/tex]: Thus:
[tex]\[ \sqrt{-44} = i \cdot \sqrt{44} \][/tex]

5. Simplify [tex]\(\sqrt{44}\)[/tex]: Notice that 44 can be decomposed into factors to further simplify the expression:
[tex]\[ \sqrt{44} = \sqrt{4 \cdot 11} = \sqrt{4} \cdot \sqrt{11} = 2 \cdot \sqrt{11} \][/tex]

6. Combine the simplified terms: Therefore:
[tex]\[ \sqrt{-44} = i \cdot 2 \sqrt{11} = 2i \sqrt{11} \][/tex]

7. Substitute back into the original expression:
[tex]\[ -5 - \sqrt{-44} = -5 - 2i \sqrt{11} \][/tex]

Thus, the fully simplified form of the expression is:
[tex]\[ -5 - 2i \sqrt{11} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-5 - 2i \sqrt{11}} \][/tex]