Answer :
Alright, let's break down the calculation step-by-step to understand how we reached the value of [tex]\(2.3 \times 10^5\)[/tex] and see the intermediate steps involved:
1. Start with the base number:
- The given base number is [tex]\(2.3\)[/tex].
2. Multiply by 10 repeatedly [tex]\(5\)[/tex] times:
- First multiplication by [tex]\(10\)[/tex]:
[tex]\[ 2.3 \times 10 = 23.0 \][/tex]
- Second multiplication by [tex]\(10\)[/tex]:
[tex]\[ 23.0 \times 10 = 230.0 \][/tex]
- Third multiplication by [tex]\(10\)[/tex]:
[tex]\[ 230.0 \times 10 = 2300.0 \][/tex]
- Fourth multiplication by [tex]\(10\)[/tex]:
[tex]\[ 2300.0 \times 10 = 23000.0 \][/tex]
- Fifth and final multiplication by [tex]\(10\)[/tex]:
[tex]\[ 23000.0 \times 10 = 230000.0 \][/tex]
3. Conclusion:
- After multiplying [tex]\(2.3\)[/tex] by [tex]\(10\)[/tex] a total of [tex]\(5\)[/tex] times, you get [tex]\(230000.0\)[/tex].
So, [tex]\(2.3 \times 10^5 = 230000.0\)[/tex].
These intermediate multiplication steps correspond to:
[tex]\[ [23.0, 230.0, 2300.0, 23000.0, 230000.0] \][/tex]
We see that the final result, [tex]\(2.3 \times 10^5\)[/tex], is indeed [tex]\(230000.0\)[/tex], and the steps leading to this result are reflective of progressive multiplications by [tex]\(10\)[/tex].
1. Start with the base number:
- The given base number is [tex]\(2.3\)[/tex].
2. Multiply by 10 repeatedly [tex]\(5\)[/tex] times:
- First multiplication by [tex]\(10\)[/tex]:
[tex]\[ 2.3 \times 10 = 23.0 \][/tex]
- Second multiplication by [tex]\(10\)[/tex]:
[tex]\[ 23.0 \times 10 = 230.0 \][/tex]
- Third multiplication by [tex]\(10\)[/tex]:
[tex]\[ 230.0 \times 10 = 2300.0 \][/tex]
- Fourth multiplication by [tex]\(10\)[/tex]:
[tex]\[ 2300.0 \times 10 = 23000.0 \][/tex]
- Fifth and final multiplication by [tex]\(10\)[/tex]:
[tex]\[ 23000.0 \times 10 = 230000.0 \][/tex]
3. Conclusion:
- After multiplying [tex]\(2.3\)[/tex] by [tex]\(10\)[/tex] a total of [tex]\(5\)[/tex] times, you get [tex]\(230000.0\)[/tex].
So, [tex]\(2.3 \times 10^5 = 230000.0\)[/tex].
These intermediate multiplication steps correspond to:
[tex]\[ [23.0, 230.0, 2300.0, 23000.0, 230000.0] \][/tex]
We see that the final result, [tex]\(2.3 \times 10^5\)[/tex], is indeed [tex]\(230000.0\)[/tex], and the steps leading to this result are reflective of progressive multiplications by [tex]\(10\)[/tex].